求助:用excel 解一元三次方程
答案:2 悬赏:10 手机版
解决时间 2021-02-19 12:57
- 提问者网友:骑士
- 2021-02-19 01:12
利用“单变量求解”只能获得一个根 但是一元三次方程有三个根 请问另外两个根怎么求?
最佳答案
- 五星知识达人网友:三千妖杀
- 2021-02-19 01:29
假设你的X的结果计算产生在A1 B1中输入 =A1^3-2.263*A1^2-6.486*A1 点:工具-单变量求解 目标单元格选B1 目标值填入 -9.714 可变单元格选A1 点确定后,A1中的值为方程的解!
全部回答
- 1楼网友:荒野風
- 2021-02-19 02:24
一元三次方程的求根公式用通常的演绎思维是作不出来的,用类似解一元二次方程的求根公式的配方法只能将型如ax^3+bx^2+cx+d+0的标准型一元三次方程形式化为x^3+px+q=0的特殊型。
一元三次方程的求解公式的解法只能用归纳思维得到,即根据一元一次方程、一元二次方程及特殊的高次方程的求根公式的形式归纳出一元三次方程的求根公式的形式。归纳出来的形如 x^3+px+q=0的一元三次方程的求根公式的形式应该为x=a^(1/3)+b^(1/3)型,即为两个开立方之和。归纳出了一元三次方程求根公式的形式,下一步的工作就是求出开立方里面的内容,也就是用p和q表示a和b。方法如下:
(1)将x=a^(1/3)+b^(1/3)两边同时立方可以得到
(2)x^3=(a+b)+3(ab)^(1/3)(a^(1/3)+b^(1/3))
(3)由于x=a^(1/3)+b^(1/3),所以(2)可化为
x^3=(a+b)+3(ab)^(1/3)x,移项可得
(4)x^3-3(ab)^(1/3)x-(a+b)=0,和一元三次方程和特殊型x^3+px+q=0作比较,可知
(5)-3(ab)^(1/3)=p,-(a+b)=q,化简得
(6)a+b=-q,ab=-(p/3)^3
(7)这样其实就将一元三次方程的求根公式化为了一元二次方程的求根公式问题,因为a和b可以看作是一元二次方程的两个根,而(6)则是关于形如ay^2+by+c=0的一元二次方程两个根的韦达定理,即
(8)y1+y2=-(b/a),y1*y2=c/a
(9)对比(6)和(8),可令a=y1,b=y2,q=b/a,-(p/3)^3=c/a
(10)由于型为ay^2+by+c=0的一元二次方程求根公式为
y1=-(b+(b^2-4ac)^(1/2))/(2a)
y2=-(b-(b^2-4ac)^(1/2))/(2a)
可化为
(11)y1=-(b/2a)-((b/2a)^2-(c/a))^(1/2)
y2=-(b/2a)+((b/2a)^2-(c/a))^(1/2)
将(9)中的a=y1,b=y2,q=b/a,-(p/3)^3=c/a代入(11)可得
(12)a=-(q/2)-((q/2)^2+(p/3)^3)^(1/2)
b=-(q/2)+((q/2)^2+(p/3)^3)^(1/2)
(13)将a,b代入x=a^(1/3)+b^(1/3)得
(14)x=(-(q/2)-((q/2)^2+(p/3)^3)^(1/2))^(1/3)+(-(q/2)+((q/2)^2+(p/3)^3)^(1/2))^(1/3)
式 (14)只是一元三方程的一个实根解,按韦达定理一元三次方程应该有三个根,不过按韦达定理一元三次方程只要求出了其中一个根,另两个根就容易求出了
参考资料:摘自高中数学网站
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯