在如图中AB,AC的长度是15,BC的长度是9.把BC折过去与AC重合,B点落在E点上,求三角形ADE与三角形ABC面积之比.
答案:2 悬赏:10 手机版
解决时间 2021-01-04 23:01
- 提问者网友:像風在裏
- 2021-01-04 00:27
在如图中AB,AC的长度是15,BC的长度是9.把BC折过去与AC重合,B点落在E点上,求三角形ADE与三角形ABC面积之比.
最佳答案
- 五星知识达人网友:末日狂欢
- 2021-01-04 00:47
解:因为BC=CE=9,
所以AE=15-9=6(厘米);
因为△ADE和△DEC的高相等,
所以△ADE和△DEC的面积比为(15-9):9=6:9=2:3;
又因为三角形BCD与三角形CDE面积相等.
所以三角形ADE与三角形ABC的面积之比为2:8 即1:4.
答:三角形ADE与三角形ABC面积之比为1:4.解析分析:首先,根据△ADE和△DEC的高相等,那么可推出这两个三角形的面积之比,等于这两个三角形的底边之比为(15-9):9=6:9=2:3.三角形BCD与三角形CDE面积相等.所以三角形ADE与三角形ABC的面积之比为2:8 即1:4点评:此题重点考查等高的两个三角形的面积之间的关系.如果在两个三角形中,底边上的高相等,这两个三角形的面积比等于底边之比.
所以AE=15-9=6(厘米);
因为△ADE和△DEC的高相等,
所以△ADE和△DEC的面积比为(15-9):9=6:9=2:3;
又因为三角形BCD与三角形CDE面积相等.
所以三角形ADE与三角形ABC的面积之比为2:8 即1:4.
答:三角形ADE与三角形ABC面积之比为1:4.解析分析:首先,根据△ADE和△DEC的高相等,那么可推出这两个三角形的面积之比,等于这两个三角形的底边之比为(15-9):9=6:9=2:3.三角形BCD与三角形CDE面积相等.所以三角形ADE与三角形ABC的面积之比为2:8 即1:4点评:此题重点考查等高的两个三角形的面积之间的关系.如果在两个三角形中,底边上的高相等,这两个三角形的面积比等于底边之比.
全部回答
- 1楼网友:夜风逐马
- 2021-01-04 01:38
对的,就是这个意思
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯