高二数学数列问题
答案:1 悬赏:10 手机版
解决时间 2021-05-04 20:04
- 提问者网友:那叫心脏的地方装的都是你
- 2021-05-04 16:55
什么叫累乘法,我不太懂,能不能举例说明一下
最佳答案
- 五星知识达人网友:慢性怪人
- 2021-05-04 17:31
累加法
例3 已知a1=1, an+1=an+2n 求an
解:由递推公式知:a2-a1=2, a3-a2=22, a4-a3=23, …an-an-1=2n-1
将以上n-1个式子相加可得
an=a1+2+22+23+24+…+2n-1=1+2+22+23+…+2n-1=2n-1
注:对递推公式形如an+1=an+f(n)的数列均可用逐差累加法
求通项公式,特别的,当f(n)为常数时,数列即为等差数列。
叠乘法
例4 已知a1=1, an=2nan-1(n≥2)求an
解:当n≥2时, =22, =23, =24,… =2n
将以上n-1个式子相乘可得
an=a1.22+3+4+…+n=2
当n=1时,a1=1满足上式
故an=2 (n∈N*)
注:对递推公式形如an+1an=g(n)的数列均可用逐商叠乘法求通项公式,特别的,当g (n)为常数时,数列即为等比数列。
例3 已知a1=1, an+1=an+2n 求an
解:由递推公式知:a2-a1=2, a3-a2=22, a4-a3=23, …an-an-1=2n-1
将以上n-1个式子相加可得
an=a1+2+22+23+24+…+2n-1=1+2+22+23+…+2n-1=2n-1
注:对递推公式形如an+1=an+f(n)的数列均可用逐差累加法
求通项公式,特别的,当f(n)为常数时,数列即为等差数列。
叠乘法
例4 已知a1=1, an=2nan-1(n≥2)求an
解:当n≥2时, =22, =23, =24,… =2n
将以上n-1个式子相乘可得
an=a1.22+3+4+…+n=2
当n=1时,a1=1满足上式
故an=2 (n∈N*)
注:对递推公式形如an+1an=g(n)的数列均可用逐商叠乘法求通项公式,特别的,当g (n)为常数时,数列即为等比数列。
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯