如图,AD是△ABC的角平分线,EF是AD的垂直平分线.
求证:(1)∠EAD=∠EDA.
(2)DF∥AC.
(3)∠EAC=∠B.
如图,AD是△ABC的角平分线,EF是AD的垂直平分线.求证:(1)∠EAD=∠EDA.(2)DF∥AC.(3)∠EAC=∠B.
答案:2 悬赏:80 手机版
解决时间 2021-04-09 21:43
- 提问者网友:欺烟
- 2021-04-09 07:47
最佳答案
- 五星知识达人网友:像个废品
- 2021-04-09 08:59
证明:(1)∵EF是AD的垂直平分线,
∴AE=DE,
∴∠EAD=∠EDA;
(2)∵EF是AD的垂直平分线,
∴AF=DF,
∴∠BAD=∠ADF,
∵AD是△ABC的角平分线,
∴∠BAD=∠CAD,
∴∠ADF=∠CAD,
∴DF∥AC;
(3)由(1)∠EAD=∠EDA,
即∠ADE=∠CAD+∠EAC,
∵∠ADE=∠BAD+∠B,
∠BAD=∠CAD,
∴∠EAC=∠B.解析分析:(1)根据垂直平分线上任意一点,到线段两端点的距离相等可得到AE=DE,再根据等角对等边可得到∠EAD=∠EDA;
(2)根据线段垂直平分线的性质证明AF=DF,进而得到∠BAD=∠ADF,再利用角平分线的性质可得到∠BAD=∠CAD,利用等量代换可得∠ADF=∠CAD,再根据平行线的判定即可得到DF∥AC;
(3)根据三角形内角与外角的关系可得到结论.点评:此题主要考查了线段的垂直平分线的性质,等腰三角形的性质,平行线的判定以及三角形内角与外角的关系,题目综合性较强,但是难度不大,需要同学们掌握好基础知识.
∴AE=DE,
∴∠EAD=∠EDA;
(2)∵EF是AD的垂直平分线,
∴AF=DF,
∴∠BAD=∠ADF,
∵AD是△ABC的角平分线,
∴∠BAD=∠CAD,
∴∠ADF=∠CAD,
∴DF∥AC;
(3)由(1)∠EAD=∠EDA,
即∠ADE=∠CAD+∠EAC,
∵∠ADE=∠BAD+∠B,
∠BAD=∠CAD,
∴∠EAC=∠B.解析分析:(1)根据垂直平分线上任意一点,到线段两端点的距离相等可得到AE=DE,再根据等角对等边可得到∠EAD=∠EDA;
(2)根据线段垂直平分线的性质证明AF=DF,进而得到∠BAD=∠ADF,再利用角平分线的性质可得到∠BAD=∠CAD,利用等量代换可得∠ADF=∠CAD,再根据平行线的判定即可得到DF∥AC;
(3)根据三角形内角与外角的关系可得到结论.点评:此题主要考查了线段的垂直平分线的性质,等腰三角形的性质,平行线的判定以及三角形内角与外角的关系,题目综合性较强,但是难度不大,需要同学们掌握好基础知识.
全部回答
- 1楼网友:十鸦
- 2021-04-09 10:38
回答的不错
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯