如图,点E、F、M、N分别在线段AB、AC、BC上,∠1+∠2=180°,∠3=∠B,判断∠CEB与∠NFB是否相等?请说明理由.
答案:2 悬赏:80 手机版
解决时间 2021-12-21 18:12
- 提问者网友:欲望失宠
- 2021-12-20 22:14
如图,点E、F、M、N分别在线段AB、AC、BC上,∠1+∠2=180°,∠3=∠B,判断∠CEB与∠NFB是否相等?请说明理由.
最佳答案
- 五星知识达人网友:执傲
- 2021-12-20 22:30
解:答:∠CEB=∠NFB.
理由:∵∠3=∠B,
∴ME∥BC,
∴∠1=∠ECB,
∵∠1+∠2=180°,
∴∠ECB+∠2=180°
∴EC∥FN,
∴∠CEB=∠NFB.解析分析:要判断两角相等,通过两直线平行,同位角或内错角相等证明.点评:解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.
理由:∵∠3=∠B,
∴ME∥BC,
∴∠1=∠ECB,
∵∠1+∠2=180°,
∴∠ECB+∠2=180°
∴EC∥FN,
∴∠CEB=∠NFB.解析分析:要判断两角相等,通过两直线平行,同位角或内错角相等证明.点评:解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.
全部回答
- 1楼网友:山君与见山
- 2021-12-20 23:26
我检查一下我的答案
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯