永发信息网

正整数集只是有理数集合的一部分,有趣的是,德国数学家康托尔(1845-1918)曾将所有有理数像正整数那样排列成一列纵队,从而和正整数集一一对应起来,让我们跟随康托尔

答案:2  悬赏:20  手机版
解决时间 2021-04-04 23:59
  • 提问者网友:箛茗
  • 2021-04-04 09:17
正整数集只是有理数集合的一部分,有趣的是,德国数学家康托尔(1845-1918)曾将所有有理数像正整数那样排列成一列纵队,从而和正整数集一一对应起来,让我们跟随康托尔的思路吧!
任何一个有理数都可以写成一个既约分数(p是整数,q是正整数),它可以对应网格纸(如图)上的一个点,即p所在行与q所在列的交点,记为(q,p).如对应图中的点A(3,1),这样,每个有理数对应着网格纸上的格点(水平线与竖直线的交叉点),而康托尔用图中的方法从中心O出发“螺旋式”地扩展开去,将平面内所有格点“一网打尽”.在图中,O(0,0)是第一个点,A(1,-1)是第________个点,B(-1,2)是第________个点,第35个点是________.
最佳答案
  • 五星知识达人网友:舍身薄凉客
  • 2021-04-04 09:47
9 16 (-1,3)解析分析:根据题意,找到规律即可求解.解答:O(0,0)是第一个点,A(1,-1)是第9个点,B(-1,2)是第16个点,第35个点是(-1,3).
全部回答
  • 1楼网友:神鬼未生
  • 2021-04-04 10:01
正好我需要
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯