证明函数f(x)=x3在(-∞,+∞)上是增函数.
答案:2 悬赏:0 手机版
解决时间 2021-01-04 10:04
- 提问者网友:不要迷恋哥
- 2021-01-04 03:51
证明函数f(x)=x3在(-∞,+∞)上是增函数.
最佳答案
- 五星知识达人网友:平生事
- 2021-01-04 05:09
解:法一:定义法
任取(-∞,+∞)两个实数x1,x2,且x1<x2,
∴x1-x2<0,x12+x1x2-x22>0
∴f(x1)-f(x2)=x13-x23=(x1-x2)(x12+x1x2-x22)<0
∴f(x1)<f(x2)
∴函数f(x)=x3在(-∞,+∞)上是增函数.
法二:导数法
∵f(x)=x3,
∴f′(x)=3x2,
∴在(-∞,+∞)上f′(x)≥0恒成立
∴函数f(x)=x3在(-∞,+∞)上是增函数.解析分析:法一:定义法,任取(-∞,+∞)两个实数x1,x2,作差后利用立方差公式进行分析,分析f(x1)与f(x2)的大小,进而根据增函数的定义可得
任取(-∞,+∞)两个实数x1,x2,且x1<x2,
∴x1-x2<0,x12+x1x2-x22>0
∴f(x1)-f(x2)=x13-x23=(x1-x2)(x12+x1x2-x22)<0
∴f(x1)<f(x2)
∴函数f(x)=x3在(-∞,+∞)上是增函数.
法二:导数法
∵f(x)=x3,
∴f′(x)=3x2,
∴在(-∞,+∞)上f′(x)≥0恒成立
∴函数f(x)=x3在(-∞,+∞)上是增函数.解析分析:法一:定义法,任取(-∞,+∞)两个实数x1,x2,作差后利用立方差公式进行分析,分析f(x1)与f(x2)的大小,进而根据增函数的定义可得
全部回答
- 1楼网友:时间的尘埃
- 2021-01-04 06:02
哦,回答的不错
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯