永发信息网

要使函数y=x2-2ax+1在[1,2]上存在反函数,则a的取值范围是A.(-∞,1]B.[2,+∞)C.(-∞,1]∪[2,+∞)D.[1,2]

答案:2  悬赏:50  手机版
解决时间 2021-01-30 19:24
  • 提问者网友:贪了杯
  • 2021-01-30 07:45
要使函数y=x2-2ax+1在[1,2]上存在反函数,则a的取值范围是A.(-∞,1]B.[2,+∞)C.(-∞,1]∪[2,+∞)D.[1,2]
最佳答案
  • 五星知识达人网友:千杯敬自由
  • 2019-07-26 05:45
C解析分析:先求出该函数的对称轴,要使函数y=x2-2ax+1在[1,2]上存在反函数即使函数在[1,2]上单调即可,建立关系式解之即可.解答:y=x2-2ax+1=(x-a)2-a2+1,∵此函数在[1,2]上有反函数,∴a≤1,或a≥2,即a的取值范围为(-∞,1]∪[2,+∞).故选C.点评:本题主要考查了反函数的性质和应用,注意合理地进行等价转化,属于基础题.
全部回答
  • 1楼网友:举杯邀酒敬孤独
  • 2019-05-06 15:02
感谢回答,我学习了
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯