设复平面上三点A、B、C对应的复数分别是Z1、Z2、Z3,若(Z2-Z1)/(Z3-Z1)=1+(4i/3),试求三角形ABC的三边长之比.
设复平面上三点A、B、C对应的复数分别是Z1、Z2、Z3,若(Z2-Z1)/(Z3-Z1)=1+(4i/3),试求三角形
答案:1 悬赏:0 手机版
解决时间 2021-06-10 00:02
- 提问者网友:不爱我么
- 2021-06-09 02:47
最佳答案
- 五星知识达人网友:千杯敬自由
- 2021-06-09 02:59
(Z2-Z1)/(Z3-Z1)=1+(4i/3)
所以(Z3-Z2)/(Z3-Z1)=(Z3-Z1+Z1-Z2)/(Z3-Z1)
=1-(Z2-Z1)/(Z3-Z1)
=-(4i/3)
AB=|Z2-Z1|
AC=|Z3-Z1|
BC=|Z3-Z2|
所以
AB:AC=|(Z2-Z1)/(Z3-Z1)|=5:3
BC:AC=|(Z3-Z2)/(Z3-Z1)|=4:3
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯