如图是某池塘中野生水葫芦的面积与时间的函数关系图象.假设其函数关系为指数函数,并给出下列说法:
①此指数函数的底数为2;
②在第5个月时,野生水葫芦的面积会超过30m2;
③野生水葫芦从4m2蔓延到12m2只需1.5个月;
④设野生水葫芦蔓延至2m2、3m2、6m2所需的时间分别为t1、t2、t3,则有t1+t2=t3;
其中正确结论的序号是________.(把所有正确的结论都填上)
如图是某池塘中野生水葫芦的面积与时间的函数关系图象.假设其函数关系为指数函数,并给出下列说法:①此指数函数的底数为2;②在第5个月时,野生水葫芦的面积会超过30m2;
答案:2 悬赏:0 手机版
解决时间 2021-04-12 16:17
- 提问者网友:藍了天白赴美
- 2021-04-11 19:28
最佳答案
- 五星知识达人网友:时间的尘埃
- 2021-04-11 20:04
①②④解析分析:根据其关系为指数函数,图象过(4,16)点,得到指数函数的底数为2,当t=5时,s=32>30,利用指对互化做出三个时间的值,结果相等,根据图形的变化趋势得出命题③错误.解答:∵其关系为指数函数,图象过(4,16)点,∴指数函数的底数为2,故①正确,当t=5时,s=32>30,故②正确4对应的t=2,经过1.5月后面积是23.5<12,故③不正确;∵t1=1,t2,=log23,t3=log26,∴有t1+t2=t3,故④正确,综上可知①②④正确.故
全部回答
- 1楼网友:上分大魔王
- 2021-04-11 20:11
感谢回答
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯