已知函数f(x)=1/2x^2+alnx(a∈R,a≠0),求f(x)的单调区间
已知函数f(x)=1/2x^2+alnx(a∈R,a≠0),求f(x)的单调区间
答案:1 悬赏:0 手机版
解决时间 2021-05-22 21:58
- 提问者网友:謫仙
- 2021-05-21 21:07
最佳答案
- 五星知识达人网友:玩家
- 2021-05-21 22:16
f(x)定义域为(0,+∞)
求导:f’(x)=x+(a/x)
①a>0时,f’(x)=x+(a/x) >0 ,f(x)在(0,+∞)上单调递增
②a<0时
f’(x)=x+(a/x) >0,x>-a/x ,x²>-a,x>√(-a),∴f(x)在(√(-a),+∞)上单调递增
f’(x)=x+(a/x) ≤0,x≤-a/x ,x²≤-a,0<x≤√(-a),∴f(x)在(0,√(-a)]上单调递减
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯