经过点A(1,-1)与(3,1)圆心在y轴上的圆的方程是
答案:1 悬赏:60 手机版
解决时间 2021-11-12 09:04
- 提问者网友:临风不自傲
- 2021-11-11 11:59
经过点A(1,-1)与(3,1)圆心在y轴上的圆的方程是
最佳答案
- 五星知识达人网友:患得患失的劫
- 2021-11-11 13:30
答:
圆心在y轴上,则圆心横坐标值为0
设圆心为(0,a),半径为R
则圆方程为:
x^2+(y-a)^2=R^2
把点A(1,-1)和点B(3,1)代入得:
1+(-1-a)^2=R^2
9+(1-a)^2=R^2
所以:
(1-a)^2-(1+a)^2+8=0
-4a+8=0
a=2
所以:R^2=9+(1-a)^2=9+(1-2)^2=10
所以:圆方程为x^2+(y-2)^2=10
圆心在y轴上,则圆心横坐标值为0
设圆心为(0,a),半径为R
则圆方程为:
x^2+(y-a)^2=R^2
把点A(1,-1)和点B(3,1)代入得:
1+(-1-a)^2=R^2
9+(1-a)^2=R^2
所以:
(1-a)^2-(1+a)^2+8=0
-4a+8=0
a=2
所以:R^2=9+(1-a)^2=9+(1-2)^2=10
所以:圆方程为x^2+(y-2)^2=10
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯