基本不等式和是定值
答案:1 悬赏:40 手机版
解决时间 2021-12-18 04:20
- 提问者网友:玩世不恭
- 2021-12-17 07:00
基本不等式和是定值
最佳答案
- 五星知识达人网友:初遇未遇
- 2021-12-17 07:44
解:和是定值,即有最大值。
设x+y=m,m>0是常数,x>0,y>0
x+y>=2(xy)^1/2
(xy)^1/2<=(x+y)/2
xy<=(x+y)^2/4=m^2/4
当x=y=m/2时,则等号成立,xymax=m^2/4
m是常熟,则m^2/4一定是常熟
机当x=y=m/2时,xy渠道最大值为m^2/4.
eg:m=4
x+y=4,x,y>0
求xy的最值,
xy<=(4/2)^2=2^2=4
x=y=2,xymax=4
x>0,y>0,xy>0
(0,4]
xy得驱逐范围为(0,4].
设x+y=m,m>0是常数,x>0,y>0
x+y>=2(xy)^1/2
(xy)^1/2<=(x+y)/2
xy<=(x+y)^2/4=m^2/4
当x=y=m/2时,则等号成立,xymax=m^2/4
m是常熟,则m^2/4一定是常熟
机当x=y=m/2时,xy渠道最大值为m^2/4.
eg:m=4
x+y=4,x,y>0
求xy的最值,
xy<=(4/2)^2=2^2=4
x=y=2,xymax=4
x>0,y>0,xy>0
(0,4]
xy得驱逐范围为(0,4].
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯