已知函数f(x)=(a-x^2)/x+lnx(a∈R,x∈[1/2,2])
已知函数f(x)=a-x^2/x+lnx(a∈R,x∈[1/2,2]).
(I)当a∈[-2,1/4)时,求f(x)的最大值;
(Ⅱ)设g(x)=[f(x)-lnx]·x^2,k是g(x)图象上不同两点的连线的斜率,是否存在实数a,使得k
已知函数f(x)=(a-x^2)/x+lnx(a∈R,x∈[1/2,2])
答案:1 悬赏:60 手机版
解决时间 2021-06-09 17:56
- 提问者网友:星軌
- 2021-06-08 23:01
最佳答案
- 五星知识达人网友:慢性怪人
- 2021-06-09 00:26
对f(x)求导
f'(x)=(-x^2+a)/x^2+1/x
=(-x^2+x-a)/x^2
令-x^2+x-a=0
Δ=1-4a>0
故x=(1+根号下(1-4a))/2或x=(1-根号下(1-4a))/2(舍)
因0
因g'(x)在全域单减
故g'(x)max=g'(1/2)
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯