1+1/(1+2)+1/(1+2+3)+……+1/(1+2+3+……+99)
答案:2 悬赏:60 手机版
解决时间 2021-01-28 22:21
- 提问者网友:佞臣
- 2021-01-28 12:39
1+1/(1+2)+1/(1+2+3)+……+1/(1+2+3+……+99)
最佳答案
- 五星知识达人网友:深街酒徒
- 2021-01-28 12:46
1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+…+1/(1+2+3+…+98)+1/(1+2+3+…+99)
=1/[(1+2)*2/2]+1/[(1+3)*3/2]+1/[(1+4)*4/2]+……+1/[(1+99)*99/2]
=2/(2*3)+2/(3*4)+2/4*5+……+2/(100*99)
=[1/2*3+1/3*4+1/4*5+......+1/99*100]*2
=(1/2-1/3+1/3-1/4+1/4-1/5+……+1/99-1/100)*2
=(1/2-1/100)*2
=49/100*2
=49/50
原因:1/(1+2)=2*(1/2-1/3)
1/(1+2+3)=2*(1/3-1/4)
1/(1+2+3+4)=2*(1/4-1/5)
………………………………
1/(1+2+……+k)=2*【1/k-1/(1+k)】
…………………
1/(1+2+3+...+99)=2*(1/99-1/100)
1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+......+1/(1+2+3+...+99)=2*(1/2-1/3+1/3-1/4+1/4-1/5+……+1/k-1/(1+k)+……+1/99-1/100)=2*(1/2-1/100)=49/50=0.98
=1/[(1+2)*2/2]+1/[(1+3)*3/2]+1/[(1+4)*4/2]+……+1/[(1+99)*99/2]
=2/(2*3)+2/(3*4)+2/4*5+……+2/(100*99)
=[1/2*3+1/3*4+1/4*5+......+1/99*100]*2
=(1/2-1/3+1/3-1/4+1/4-1/5+……+1/99-1/100)*2
=(1/2-1/100)*2
=49/100*2
=49/50
原因:1/(1+2)=2*(1/2-1/3)
1/(1+2+3)=2*(1/3-1/4)
1/(1+2+3+4)=2*(1/4-1/5)
………………………………
1/(1+2+……+k)=2*【1/k-1/(1+k)】
…………………
1/(1+2+3+...+99)=2*(1/99-1/100)
1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+......+1/(1+2+3+...+99)=2*(1/2-1/3+1/3-1/4+1/4-1/5+……+1/k-1/(1+k)+……+1/99-1/100)=2*(1/2-1/100)=49/50=0.98
全部回答
- 1楼网友:天凉才是好个秋
- 2021-01-28 13:14
这里用到的裂项相消法
因为1+2+3+..+n=n(n+1)/2
所以[1/(1+2+3+…+n)]=2/n(n+1)=2[1/n-1/(n+1)]
所以sn=1+[1/(1+2)]+〔1/(1+2+3)〕+[1/(1+2+3+4)]+……+[1/(1+2+3+……+n)]
=2[1/1-1/2]+2[1/2-1/3]+2[1/3-1/4]+...+2[1/n-1/(n+1)]
=2[1-1/2+1/2-1/3+1/3-1/4+...+1/(n-1)-1/n+1/n-1/(n+1)]
=2[1-1/(n+1)]=2n/(n+1)
因为1+2+3+..+n=n(n+1)/2
所以[1/(1+2+3+…+n)]=2/n(n+1)=2[1/n-1/(n+1)]
所以sn=1+[1/(1+2)]+〔1/(1+2+3)〕+[1/(1+2+3+4)]+……+[1/(1+2+3+……+n)]
=2[1/1-1/2]+2[1/2-1/3]+2[1/3-1/4]+...+2[1/n-1/(n+1)]
=2[1-1/2+1/2-1/3+1/3-1/4+...+1/(n-1)-1/n+1/n-1/(n+1)]
=2[1-1/(n+1)]=2n/(n+1)
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯