证明 欧拉乘积公式:对任意复数s, 若 Re(s)>1, 则: Σn n-s = Πp(1-p-s)-1
答案:1 悬赏:60 手机版
解决时间 2021-03-08 16:17
- 提问者网友:临风不自傲
- 2021-03-07 16:15
证明 欧拉乘积公式:对任意复数s, 若 Re(s)>1, 则: Σn n-s = Πp(1-p-s)-1
最佳答案
- 五星知识达人网友:人间朝暮
- 2021-03-07 17:09
证明: 由于 Σn|f(n)| < ∞, 因此 1+f(p)+f(p2)+f(p3)+ ... 绝对收敛。 考虑连乘积中 p < N 的部分 (有限项), 由于级数绝对收敛, 乘积又只有有限项, 因此可以使用与普通有限求和及乘积一样的结合律及分配律。利用 f(n) 的乘积性质可得:
Πp 其中右端求和对所有只含 N 以下素数因子的自然数进行 (每个这样的自然数只在求和中出现一次,因为自然数的素数分解是唯一的)。由于所有本身在 N 以下的自然数显然都只含 N 以下的素数因子,因此 Σ'f(n) = Σn Πp 要使广义 Euler 乘积公式成立, 只需证明 limN→∞R(N) = 0 即可。 后者是显然的, 因为 |R(N)| ≤ Σn≥N|f(n)|,而 Σn|f(n)| < ∞ 表明 limN→∞Σn≥N|f(n)| = 0, 从而 limN→∞|R(N)| = 0。
由于 1+f(p)+f(p2)+f(p3)+ ... = [1-f(p)]-1, 因此广义 Euler 乘积公式也可以写成:
Σnf(n) = Πp[1-f(p)]-1
在广义 Euler 乘积公式中取 f(n) = n-s, 则显然 Σn|f(n)| < ∞ 对应于 Euler 乘积公式中的条件 Re(s)>1, 而广义 Euler 乘积公式退化为 Euler 乘积公式。
从上述证明中我们可以看到, Euler 乘积公式成立的关键在于每一个自然数都具有唯一素数分解式这一基本性质 (即所谓的算术基本定理)。
Euler 本人的证明: 除了上述证明方法外, Euler 原始论文中的证明方法也相当简洁, 值得介绍一下。 仍以广义 Euler 乘积公式为框架, 注意到 (利用 f(n) 的性质):
f(2)Σnf(n) = f(2)+f(4)+f(6)+ ...
因此:
[1-f(2)]Σnf(n) = f(1)+f(3)+f(5)+ ...
等式右端所有含有因子 2 的 f(n) 项都消去了 (这种逐项对消有赖于Σn|f(n)| < ∞, 即 Σnf(n) 绝对收敛)。
类似地,以 [1-f(3)] 乘以上式则右端所有含有因子 3 的 f(n) 项也都消去了, 依此类推, 将所有 [1-f(p)] (p 为素数) 乘上后右端便只剩下了 f(1), 即:
Πp[1-f(p)]Σnf(n) = f(1) = 1
其中最后一步再次使用了 f(n) 的性质 (f(1)f(n)=f(n) → f(1)=1)。将无穷乘积移到等式右边显然就得到了广义 Euler 乘积公式。 有兴趣的不妨试着将上述最后几步用极限的语言严格表述一下。
Πp
由于 1+f(p)+f(p2)+f(p3)+ ... = [1-f(p)]-1, 因此广义 Euler 乘积公式也可以写成:
Σnf(n) = Πp[1-f(p)]-1
在广义 Euler 乘积公式中取 f(n) = n-s, 则显然 Σn|f(n)| < ∞ 对应于 Euler 乘积公式中的条件 Re(s)>1, 而广义 Euler 乘积公式退化为 Euler 乘积公式。
从上述证明中我们可以看到, Euler 乘积公式成立的关键在于每一个自然数都具有唯一素数分解式这一基本性质 (即所谓的算术基本定理)。
Euler 本人的证明: 除了上述证明方法外, Euler 原始论文中的证明方法也相当简洁, 值得介绍一下。 仍以广义 Euler 乘积公式为框架, 注意到 (利用 f(n) 的性质):
f(2)Σnf(n) = f(2)+f(4)+f(6)+ ...
因此:
[1-f(2)]Σnf(n) = f(1)+f(3)+f(5)+ ...
等式右端所有含有因子 2 的 f(n) 项都消去了 (这种逐项对消有赖于Σn|f(n)| < ∞, 即 Σnf(n) 绝对收敛)。
类似地,以 [1-f(3)] 乘以上式则右端所有含有因子 3 的 f(n) 项也都消去了, 依此类推, 将所有 [1-f(p)] (p 为素数) 乘上后右端便只剩下了 f(1), 即:
Πp[1-f(p)]Σnf(n) = f(1) = 1
其中最后一步再次使用了 f(n) 的性质 (f(1)f(n)=f(n) → f(1)=1)。将无穷乘积移到等式右边显然就得到了广义 Euler 乘积公式。 有兴趣的不妨试着将上述最后几步用极限的语言严格表述一下。
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯