永发信息网

已知函数f(x)=lg(kx-1)/(x-1), (k属于R且k>0),若函数f(x)在[10,正无穷)上单调递增,求k的取值范围

答案:3  悬赏:0  手机版
解决时间 2021-05-06 16:46
  • 提问者网友:低吟詩仙的傷
  • 2021-05-05 20:32
给点过程,谢谢
最佳答案
  • 五星知识达人网友:怀裏藏嬌
  • 2021-05-05 20:40

f(x)=lg(kx-1)/(x-1),=lg(kx-1)-lg(x-1)


首先k不等于1/10    因为如果k=1/10的话,则当x=10时就会出现(kx-1)/(x-1)=0


因为k>0   所以真数可以不必考虑


k不等于1    如果=1的话真数(kx-1)/(x-1)=1   成为既不增也不减的函数


又由y=lgn可知对数lgn   在其定义域内是递增函数


所以如果k<1  就会出现lg(kx-1)<lg(x-1)成为减函数


综上所述可知,k>1


希望可以帮到你,如果有错误的话,请原谅!

全部回答
  • 1楼网友:话散在刀尖上
  • 2021-05-05 22:44

求导,关注定义域即可。

  • 2楼网友:人類模型
  • 2021-05-05 21:55
好难的题
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯