永发信息网

在数列}an}中,a1=2,an=2an-1+2^n+1(n》=2) 令bn=an/2^n,求证{bn}是等差数列.

答案:1  悬赏:20  手机版
解决时间 2021-05-20 16:50
  • 提问者网友:兔牙战士
  • 2021-05-19 17:57
在数列}an}中,a1=2,an=2an-1+2^n+1(n》=2) 令bn=an/2^n,求证{bn}是等差数列.
最佳答案
  • 五星知识达人网友:愁杀梦里人
  • 2021-05-19 18:29

1已知数列an满足an=2an-1+2^n-1(n>=2),
有an-1=2(an-1-1)+2^n,两边同时除以2^n,得bn=bn-1+1
故数列{bn}为首项b1=2,d=1的等差数列
2由一问可知,an=(n+1)2^n+1
故sn=n*(n+1)/2 +2*2+3*2^2+……+(n+1)*2^n
用错位相减法 出即可
bn=2An-1+2^n-2=b(n-1)+1


我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯