观察下列式子.
①32-12=(3+1)(3-1)=8,
②52-32=(5+3)(5-3)=16,
③72-52=(7+5)(7-5)=24,
④92-72=(9+7)(9-7)=32.
求(1)20112-20092=______;
(2)结论:任意两个连续奇数的平方差一定是______,并说明理由.
观察下列式子.①32-12=(3+1)(3-1)=8,②52-32=(5+3)(5-3)=16,③72-52=(7+5)(7-5)=24,④92-72=(9+7)(9
答案:2 悬赏:80 手机版
解决时间 2021-01-03 23:29
- 提问者网友:温柔港
- 2021-01-03 03:30
最佳答案
- 五星知识达人网友:等灯
- 2021-01-03 03:52
解:(1)20112-20092
=(2011+2009)(2011-2009)
=8040;
(2)设两个连续奇数为2n+1,2n-1(n为整数),
则(2n+1)2-(2n-1)2=(2n+1+2n-1)(2n+1-2n+1)=8n,
可知8n为8的倍数.
故
=(2011+2009)(2011-2009)
=8040;
(2)设两个连续奇数为2n+1,2n-1(n为整数),
则(2n+1)2-(2n-1)2=(2n+1+2n-1)(2n+1-2n+1)=8n,
可知8n为8的倍数.
故
全部回答
- 1楼网友:廢物販賣機
- 2021-01-03 05:30
这个问题我还想问问老师呢
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯