如图,求∠A+∠B+∠C+∠D+∠E的度数.
答案:2 悬赏:80 手机版
解决时间 2021-03-23 02:08
- 提问者网友:活着好累
- 2021-03-22 08:10
如图,求∠A+∠B+∠C+∠D+∠E的度数.
最佳答案
- 五星知识达人网友:笑迎怀羞
- 2021-03-22 08:42
解:∵∠1是△AEF的外角,
∴∠1=∠A+∠E.
∵∠2是△BOC的外角,
∴∠2=∠B+∠C.
在△DOF中,∠D+∠1+∠2=180°,
∴∠A+∠B+∠C+∠D+∠E=∠D+∠1+∠2=180°.解析分析:要求∠A+∠B+∠C+∠D+∠E的度数,只要求出∠D+∠1+∠2的度数,利用三角形外角性质得,∠1=∠A+∠E,∠2=∠B+∠C;在△DOF中,∠D+∠1+∠2=180°,∴∠A+∠B+∠C+∠D+∠E=∠D+∠1+∠2=180°.点评:考查三角形外角性质与内角和定理.将∠A+∠B+∠C+∠D+∠E拼凑在一个三角形中是解题的关键.
∴∠1=∠A+∠E.
∵∠2是△BOC的外角,
∴∠2=∠B+∠C.
在△DOF中,∠D+∠1+∠2=180°,
∴∠A+∠B+∠C+∠D+∠E=∠D+∠1+∠2=180°.解析分析:要求∠A+∠B+∠C+∠D+∠E的度数,只要求出∠D+∠1+∠2的度数,利用三角形外角性质得,∠1=∠A+∠E,∠2=∠B+∠C;在△DOF中,∠D+∠1+∠2=180°,∴∠A+∠B+∠C+∠D+∠E=∠D+∠1+∠2=180°.点评:考查三角形外角性质与内角和定理.将∠A+∠B+∠C+∠D+∠E拼凑在一个三角形中是解题的关键.
全部回答
- 1楼网友:七十二街
- 2021-03-22 10:12
我学会了
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯