换底公式求解
答案:4 悬赏:30 手机版
解决时间 2021-04-19 06:33
- 提问者网友:雨不眠的下
- 2021-04-18 10:07
换底公式求解
最佳答案
- 五星知识达人网友:杯酒困英雄
- 2021-04-18 11:12
令logc^b=x,logc^a=y,则
b=c^x,a=c^y,loga^b=x/y
b=a^(x/y)=(c^y)^(x/y)=c^x
loga^b=log(a,a^(x/y))=x/y=logc^b/logc^a
c就是换后的底!
1.loga^c*logc^a=1
=lgc/lga*lga/lgc=1
2.log2^3*log3^4*log4^5*log5^2=1
=lg3/lg2*lg4/lg3*lg5/lg4*lg2/lg5=1
3.(log4^3+log8^3)*(log3^2+log9^2)
=(lg3/lg4+lg3/lg8)*(lg2/lg3+lg2/lg9)
=(lg3/2lg2+lg3/3lg2)*(lg2/lg3+lg2/2lg3)
=5/6*lg3/lg2*3/2*lg2/lg3
=5/6*3/2
=5/4
b=c^x,a=c^y,loga^b=x/y
b=a^(x/y)=(c^y)^(x/y)=c^x
loga^b=log(a,a^(x/y))=x/y=logc^b/logc^a
c就是换后的底!
1.loga^c*logc^a=1
=lgc/lga*lga/lgc=1
2.log2^3*log3^4*log4^5*log5^2=1
=lg3/lg2*lg4/lg3*lg5/lg4*lg2/lg5=1
3.(log4^3+log8^3)*(log3^2+log9^2)
=(lg3/lg4+lg3/lg8)*(lg2/lg3+lg2/lg9)
=(lg3/2lg2+lg3/3lg2)*(lg2/lg3+lg2/2lg3)
=5/6*lg3/lg2*3/2*lg2/lg3
=5/6*3/2
=5/4
全部回答
- 1楼网友:一把行者刀
- 2021-04-18 12:33
题有人回答 了,我就给你提供个推导公式吧
- 2楼网友:夜风逐马
- 2021-04-18 12:15
1.loga^c*logc^a=(logk^c/logk^a)*(logk^a/logk^c)=1
2.log2^3*log3^4*log4^5*log5^2=(lg3/lg2)*(lg4/lg3)*(lg5/lg4)*(lg2/lg5)=1
3.
.(log4^3+log8^3)*(log3^2+log9^2)=(1/2log2^3+1/3log2^3)*(log3^2+1/2log3^2)=5/6log2^3*3/2log3^2=5/4
2.log2^3*log3^4*log4^5*log5^2=(lg3/lg2)*(lg4/lg3)*(lg5/lg4)*(lg2/lg5)=1
3.
.(log4^3+log8^3)*(log3^2+log9^2)=(1/2log2^3+1/3log2^3)*(log3^2+1/2log3^2)=5/6log2^3*3/2log3^2=5/4
- 3楼网友:酒者煙囻
- 2021-04-18 11:58
.loga^c*logc^a=1
2.log2^3*log3^4*log4^5*log5^2=1
3.(log4^3+log8^3)*(log3^2+log9^2)=15追问做错了,第三题
2.log2^3*log3^4*log4^5*log5^2=1
3.(log4^3+log8^3)*(log3^2+log9^2)=15追问做错了,第三题
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯