恒星距离和质量的测定方法
答案:3 悬赏:80 手机版
解决时间 2021-03-05 23:08
- 提问者网友:無理詩人
- 2021-03-05 05:14
恒星距离和质量的测定方法
最佳答案
- 五星知识达人网友:旧脸谱
- 2021-03-05 05:26
这个难说的啊
全部回答
- 1楼网友:何以畏孤独
- 2021-03-05 07:03
用三角视差法可以测量出100光年范围以内的恒星。三角视差法是把被测的那个天体置于一个特大三角形的顶点,地球绕太阳公转的轨道直径的两端是这个三角形的另外二个顶点,通过测量地球到那个天体的视角,再用到已知的地球绕太阳公转轨道的直径,依靠三角公式就能推算出那个天体到我们的距离了。
在远的就要通过开普勒第三定律,(a的公转周期)2×(b的轨道半径)3 =(b的公转周期)2×(a的轨道半径)3。 公转周期可以通过观察直接求得。然后就求出2个未知数。下一步是由太阳系过渡到恒星距离的测定,由于地球每年绕太阳公转一周,我们在一年之中所看到附近恒星在天上的方向老是略有变迁。图b-1就简略地表示了这种情况。把地球在1月1日的位置和7月1日的位置这两点用一条直线连起来,它的长度是已知的,也就是地球轨道半径的2倍。天文学家只要在这2天观测某星,就能测出图b-1中的cab角和cba角。这样,三角形abc的两角和一边已知,用我们在中学里就已学过的数学可以求出所有未知的角和边,就是说,也能算出地球和该星在1月1日和7月1日两个时刻的距离。不过实际上恒星都是极为遥远,这两段距离之间的细微差别完全可以忽略不计。
还一中重要的方法是:它的依据是,同一个星团中的恒星都在以同样的速率沿着平行的轨道向同一方向运动。虽然从地球上看去它们在天上的位置变化非常缓慢,很不容易测量出来,但天文学家还是发现了许多星团中群星的平行轨道都有会聚到天上某一点的现象,就像地面平行的火车铁轨看起来在远方会聚到一点那样。这种会聚点告诉我们该群恒星飞向何方。有了这项信息,又用多普勒效应得到了这些恒星的视向速度,再测出了它们年复一年相对于遥远背景星的移动角速度,就可以求出它们的距离来。这时的做法也无非就是简易的解三角形计算。许多星团的距离是这样测定的。再把这些星的光度求出来。在研究它们在赫罗图上的分布规律。, 以上不能的话 就要通过2条规律一条是其中质量较小的恒星位于主序上,另一条是这些星全都满足主序星所应有的颜色与光度对应关系。这样一来,只要我能测出这个星团中某一颗主序星的颜色,马上就能知道它的光度,把光度和这颗星在天上看起来的视亮度加以对比,略作计算,我就能求出这颗星的,也就是这个星团的距离。
总的来说, 天文学家利用三角视差法、分光视差法、星团视差法、统计视差法、造父视差法和力学视差法等,测定恒星与我们的距离。
- 2楼网友:行雁书
- 2021-03-05 06:46
恒是距离我们非常遥远,连光都要走好多年。那么,怎样测量出恒星的距离呢? 测量的方法很多,其中对大量较近的恒星可以采用三角视差法测量,如右图。地球绕太阳作周年运动,地球和太阳的距离在恒星处的张角称为“周年视差”,用π表示。地球和太阳的平均距离a是已知的,周年视差π可测定出。这样,有了a和π恒星和太阳的距离r就很容易求出,即:见最后的图 (π很小,按直角三角形公式计算)
测量恒星的距离还有其它许多方法,而三角视差法是最基本的方法。
在当今这个电子时代,太阳系的距离测量是不成问题的。人们用雷达测量金星的距离,并且根据约翰内斯·开普勒发现的“开普勒第三定律”来分析。这条定律把各行星绕太阳公转的周期和它们的轨道半径联系了起来,举例来说,如果A和B各代表一颗行星,比方说金星与地球,那么开普勒这条定律可写为
(A的公转周期)2×(B的轨道半径)3=(B的公转周期)2×(A的轨道半径)3。
行星的公转周期可以直接由观测求得(地球365.26天,金星224.70天),所以这条定律为我们提供了一个联系两行星轨道半径的方程式。
人们能够把雷达信号从地球发到金星,并且收到由金星反射回来的信号。雷达信号以光速运动,知道了它的传播时间就可以得到地球与金星的距离,从而求出两者的轨道半径差。这样一来,我们就有了包含地球与金星轨道半径这两个未知数的两个方程式,然后把它们解出来就行了。
下一步是由太阳系过渡到恒星距离的测定。天文学家为此所用的“视差法”早就由伽利略(GalileoGalilei)提出过,但是直到1838年才由弗里德里希·威廉·贝塞尔第一次成功地用来测定天鹅座61号星的距离(这在本书第4章已提到过)。由于地球每年绕太阳公转一周,我们在一年之中所看到附近恒星在天上的方向老是略有变迁。图B-1就简略地表示了这种情况。把地球在1月1日的位置和7月1日的位置这两点用一条直线连起来,它的长度是已知的,也就是地球轨道半径的2倍。天文学家只要在这2天观测某星,就能测出图B-1中的CAB角和CBA角。这样,三角形ABC的两角和一边已知,用我们在中学里就已学过的数学可以求出所有未知的角和边,就是说,也能算出地球和该星在1月1日和7月1日两个时刻的距离。不过实际上恒星都是极为遥远,这两段距离之间的细微差别完全可以忽略不计。
这样,我们就得出了恒星离太阳系的距离。用了这种方法,人们已经能够把天体的距离测量伸展到大约300光年的远处。举例来说,图2-2是太阳附近恒星的赫罗图,其中所有恒星的距离全都是用视差方法测定的。对于更远的恒星,从地球轨道上相隔半年的两处望去的方向差值实在太微小,测不出来,这种方法就不灵验了。
还有一种重要的距离测定法,这里只大略地讲一下。它的依据是,同一个星团中的恒星都在以同样的速率沿着平行的轨道向同一方向运动。虽然从地球上看去它们在天上的位置变化非常缓慢,很不容易测量出来,但天文学家还是发现了许多星团中群星的平行轨道都有会聚到天上某一点的现象,就像地面平行的火车铁轨看起来在远方会聚到一点那样。这种会聚点告诉我们该群恒星飞向何方。有了这项信息,又用多普勒效应得到了这些恒星的视向速度,再测出了它们年复一年相对于遥远背景星的移动角速度,就可以求出它们的距离来。这时的做法也无非就是简易的解三角形计算。许多星团的距离是这样测定的。再把这些星的光度求出来,就能够像第2章中所讲的那样去研究它们在赫罗图上的分布规律。
我们也不妨反其道而行之。比方说有某个星团离开我们实在太远,上面所讲的各种测定距离的方法都不管用了,那么我们还可以利用两条规律来解决问题,一条是其中质量较小的恒星位于主序上,另一条是这些星全都满足主序星所应有的颜色与光度对应关系。这样一来,只要我能测出这个星团中某一颗主序星的颜色,马上就能知道它的光度,把光度和这颗星在天上看起来的视亮度加以对比,略作计算,我就能求出这颗星的,也就是这个星团的距离。
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯