Luminescence Spectroscopy. The room-temperature
photoluminescence (PL) spectra of 1-5 inCH2Cl2 are shown
in Figure 3a, and the photoluminescent data are given in
Table 1. All of the complexes exhibit intense PL emission
with quantum efficiencies of 0.13-0.25 and emission lifetimes
of 0.75-2.7 μs. Complex 1 exhibits intense blue emissions
with vibronic fine structure at 457 and 486 nm,
corresponding to CIE (x = 0.18, y = 0.31). That is, the
emission of 1 is bluer than that of the already known complex
Ir(dfpy)(pic) (7)20 with CIE (x=0.16, y=0.33) (see Figures 3
and 4). The vibrational fine structure observed in the emission
spectra is the result of several overlapping satellite bands
that belong to different vibronic transitions.21 Generally,
emission bands from charge-transfer (CT) states are broad
and featureless, while ligand-centered (LC) states typically
give highly structured emissions.22 Thus, we can conclude
that the emission of 1 is mainly attributable to 3LC (πC∧N f
π*C∧N) and [dπ(Ir)fπ*C∧N] 3MLCT transitions.
It has been well demonstrated that the photophysical
properties of iridium(III) complexes, especially emission
color, are determined by the ligand structures. In our previous
report,15 we described the synthesis of a series of
cationic iridium(III) complexes [Ir(piq)2(N∧N)]þPF6
- (piq
=1-phenylisoquinoline), the emission wavelengths of which
could be significantly tuned from 586 to 732 nm. However,
all of these complexes are red-emitting materials. In the
present work, significant emission color tuning from blue
to deep red was realized (see Figure 4); the emission wavelength
could be tuned from 457 to 632 nm. That is, the
emission of these complexes is significantly red-shifted with
extension of the conjugated length of the N∧N ligands.
Moreover, the emission bands of 2-5 are broad and featureless.
Taken together with the results of theoretical calculations
(Table 2), we conclude that the emissions of 2-5 are
mainly attributable to [dπ(Ir) f π*N∧N] 3MLCT transitions
and 3[πC∧N f π*N∧N] LLCT transitions.
The low-temperature PL spectra of the complexes in
CH2Cl2 glass were recorded and are shown in Figure 3b. A
blue shift in the emission maxima of 20-30 nm on going
from fluid solution at room temperature to a rigid matrix at
77Kwas observed for 2-5. For typicalMLCTemitters, such
as the well-known [Ru(bpy)3]2þ complex and analogous
compounds, such a blue shift is usually in the range of
1000-2000 cm-1, and it is also in the same range for Ir(III)
cyclometalated compounds that are reported to be pure
MLCT emitters.23 For 2-5, the rather small blue shifts of
<1000 cm-1 imply that the emissions of these complexes are
mainly assigned to MLCT transitions. The blue shift is
caused by fast solvent reorganization in fluid solution at
room temperature, which can stabilize the CT states before
the emission takes place.
求翻译Luminescence Spectroscopy. The room-temperature
答案:5 悬赏:80 手机版
解决时间 2021-01-27 10:37
- 提问者网友:最爱你的唇
- 2021-01-26 16:41
最佳答案
- 五星知识达人网友:胯下狙击手
- 2021-01-26 17:11
发光光谱研究。1-5在CH2Cl中的室温光致发光(PL)示于图3a,而光致发光数据在表1中给出。所有这些络合物都呈现强的PL发射,量子效率为0.13-0.25,发射寿命为0.75-2.7μs。络合物1呈现强的蓝光发射,在457和486nm处有电子振动的微细结构,对应于CIE(x=0.18,y=0.31)。也就是说,1的发射比已知的、具有CIE(x=0.16,y=0.33)的络合物Ir(dfpy)(pic)(7)20更蓝(见图3和4)。在发射谱中观察到的电子振动的微细结构是属于不同电子振动跃迁的若干重叠的附属谱带的结果21。一般来说,来自电荷传递(CT)状态的发射谱带是宽的,没有特色的,而以配体为中心的(LC)状态典型来说给出高度结构化的发射22。因此,我们可以得出结论,1的发射主要可归因于3LC(πC∧N→π*C∧N)和[dπ(Ir) →π*C∧N]3MLCT跃迁。
人们已很好地试验证实,铱(III)络合物的光物理性质,特别是发射颜色,由配体结构决定。在我们以前的报告中15,我们描述了一系列阳离子铱(III)络合物[Ir(piq)2(N∧N)]+PF6-
(piq=1-苯基异喹啉),它们的发射波长可以从586nm明显调谐到732nm。可是,所有这些络合物都是红光发射材料。在本研究中,实现了从蓝色到深红色的明显的发射颜色的调谐(见图4);发射波长可从457nm调谐到632nm。也就是说,这些络合物的发射随着N∧N配体共轭长度的扩展明显红移了。而且,2-5的发射谱带是宽的,并且没有特色的。将这些理论计算结果(表2)放在一起,我们得出结论,2-5的发射主要可归因于[dπ(Ir) →π*C∧N]3MLCT跃迁和3[πC∧N→π*N∧N]LLCT跃迁。
这些络合物在CH2Cl2玻璃中的低温PL谱示于图3b。对于2-5来说,观察到了在从室温流体溶液进到77K下的刚性基质时,发射最大值的20-30nm的蓝移。对于典型的MLCT发射体,例如众所周知的[Ru(bpy)3]2+络合物或类似的化合物来说,这样的蓝移通常实在1000-2000cm-1的范围,而对于Ir(III)环金属化合物来说(据报道它们是纯MLCT发射体),也是在此范围内23。对于2-5来说,小于1000cm-1的小蓝移反映了这些络合物的发射主要归因于MLCT跃迁。此蓝移是由室温下流体溶液的快速溶剂重组而引起的,这可以使CT状态在1发生前稳定化。
人们已很好地试验证实,铱(III)络合物的光物理性质,特别是发射颜色,由配体结构决定。在我们以前的报告中15,我们描述了一系列阳离子铱(III)络合物[Ir(piq)2(N∧N)]+PF6-
(piq=1-苯基异喹啉),它们的发射波长可以从586nm明显调谐到732nm。可是,所有这些络合物都是红光发射材料。在本研究中,实现了从蓝色到深红色的明显的发射颜色的调谐(见图4);发射波长可从457nm调谐到632nm。也就是说,这些络合物的发射随着N∧N配体共轭长度的扩展明显红移了。而且,2-5的发射谱带是宽的,并且没有特色的。将这些理论计算结果(表2)放在一起,我们得出结论,2-5的发射主要可归因于[dπ(Ir) →π*C∧N]3MLCT跃迁和3[πC∧N→π*N∧N]LLCT跃迁。
这些络合物在CH2Cl2玻璃中的低温PL谱示于图3b。对于2-5来说,观察到了在从室温流体溶液进到77K下的刚性基质时,发射最大值的20-30nm的蓝移。对于典型的MLCT发射体,例如众所周知的[Ru(bpy)3]2+络合物或类似的化合物来说,这样的蓝移通常实在1000-2000cm-1的范围,而对于Ir(III)环金属化合物来说(据报道它们是纯MLCT发射体),也是在此范围内23。对于2-5来说,小于1000cm-1的小蓝移反映了这些络合物的发射主要归因于MLCT跃迁。此蓝移是由室温下流体溶液的快速溶剂重组而引起的,这可以使CT状态在1发生前稳定化。
全部回答
- 1楼网友:等灯
- 2021-01-26 20:28
肯定有许多机译的答案。
- 2楼网友:十鸦
- 2021-01-26 20:14
发光光谱。在室温
光致发光(特等)1-5 inCH2Cl2载谱
图3a和数据都在发光
表1。配合展览的所有激烈的PL发射
与0.13-0.25寿命量子效率及废气排放
微秒的0.75-2.7。配合物呈蓝色排放激烈
纳米与分子振动在457和486的精细结构,
相应的智库(十= 0.18,为y = 0.31)。也就是说,
1排放比已知的更蓝的复杂
铱(dfpy)(图)(7)与智库20(十= 0.16,为y = 0.33)(见图3
和4)。振动精细结构观察到的废气排放
光谱是几个波段卫星重叠的结果
属于不同的电子振动transitions.21一般来说,
从发射带电荷转移(CT)的状态是广阔
和无特色,而配体为中心(立法会)各国通常
给予高度结构化emissions.22因此,我们可以得出结论:
1排放的主要原因是3LC(πC∧ñ f
π* ç∧N)和[dπ(IR)的fπ* ç∧ŋ] 3MLCT过渡。
它已经很好证明,光物理
性能铱(III)配合,特别是废气排放
颜色,取决于配体结构。在我们以前的
报告中,我们描述了15了一系列综合
阳离子铱(Ⅲ)配合物[铱(智商)2(不适用∧北)] þPF6
- (智商
= 1 - phenylisoquinoline),其中的发射波长
可显着调整从586到732纳米。然而,
这些配合物都是红色发光材料。在
目前的工作,显着的排放颜色从蓝色调
以深红色,实现了(见图4);的发射波长
可调谐波长从457至632。也就是说,
这些配合物的排放量显着红移与
延长了N∧N配共轭长度。
此外,2月5日的发射带广阔,无特色。
两者合计与理论计算结果
(表2),我们的结论是2-5的排放量
主要是由于[dπ(红外)架Fπ* ñ ñ∧] 3MLCT转换
3 [πCñ f∧∧π* ñ ñ] LLCT过渡。
低温PL谱的复合物
二氯甲烷玻璃被记录,并在图3b所示。一
蓝移在20-30纳米的排放最大值进行中
从流体溶液在室温下在一个刚性矩阵
77Kwas观察2-5。对于typicalMLCTemitters,例如
作为著名的[包埋Ru(bpy)3]第2和类似的复杂
化合物,这样的蓝移,而一般在范围
1000-2000 cm - 1的,也是在相同的红外范围(三)
据报道,这是纯粹的环金属化合物
MLCT的emitters.23 2-5,在相当小的蓝移
<一〇〇〇厘米- 1意味着,这些配合物的排放量
主要是分配给MLCT的过渡。的蓝移
在流体的快速解决方案所造成的溶剂重组
室温下,可稳定状态前的CT
排放发生。
- 3楼网友:第幾種人
- 2021-01-26 19:00
Luminescence Spectroscopy. The room-temperature
photoluminescence (PL) spectra of 1-5 inCH2Cl2 are shown
in Figure 3a, and the photoluminescent data are given in
Table 1. All of the complexes exhibit intense PL emission
with quantum efficiencies of 0.13-0.25 and emission lifetimes
of 0.75-2.7 μs. Complex 1 exhibits intense blue emissions
with vibronic fine structure at 457 and 486 nm,
corresponding to CIE (x = 0.18, y = 0.31). That is, the
emission of 1 is bluer than that of the already known complex
Ir(dfpy)(pic) (7)20 with CIE (x=0.16, y=0.33) (see Figures 3
and 4). The vibrational fine structure observed in the emission
spectra is the result of several overlapping satellite bands
that belong to different vibronic transitions.21 Generally,
emission bands from charge-transfer (CT) states are broad
and featureless, while ligand-centered (LC) states typically
give highly structured emissions.22 Thus, we can conclude
that the emission of 1 is mainly attributable to 3LC (πC∧N f
π*C∧N) and [dπ(Ir)fπ*C∧N] 3MLCT transitions.
It has been well demonstrated that the photophysical
properties of iridium(III) complexes, especially emission
color, are determined by the ligand structures. In our previous
report,15 we described the synthesis of a series of
cationic iridium(III) complexes [Ir(piq)2(N∧N)]þPF6
- (piq
=1-phenylisoquinoline), the emission wavelengths of which
could be significantly tuned from 586 to 732 nm. However,
all of these complexes are red-emitting materials. In the
present work, significant emission color tuning from blue
to deep red was realized (see Figure 4); the emission wavelength
could be tuned from 457 to 632 nm. That is, the
emission of these complexes is significantly red-shifted with
extension of the conjugated length of the N∧N ligands.
Moreover, the emission bands of 2-5 are broad and featureless.
Taken together with the results of theoretical calculations
(Table 2), we conclude that the emissions of 2-5 are
mainly attributable to [dπ(Ir) f π*N∧N] 3MLCT transitions
and 3[πC∧N f π*N∧N] LLCT transitions.
The low-temperature PL spectra of the complexes in
CH2Cl2 glass were recorded and are shown in Figure 3b. A
blue shift in the emission maxima of 20-30 nm on going
from fluid solution at room temperature to a rigid matrix at
77Kwas observed for 2-5. For typicalMLCTemitters, such
as the well-known [Ru(bpy)3]2þ complex and analogous
compounds, such a blue shift is usually in the range of
1000-2000 cm-1, and it is also in the same range for Ir(III)
cyclometalated compounds that are reported to be pure
MLCT emitters.23 For 2-5, the rather small blue shifts of
<1000 cm-1 imply that the emissions of these complexes are
mainly assigned to MLCT transitions. The blue shift is
caused by fast solvent reorganization in fluid solution at
room temperature, which can stabilize the CT states before
the emission takes place.
发光光谱,在室温
光致发光(特等)1-5 inCH2Cl2载谱
图3a和数据都在发光
表1。配合展览的所有激烈的PL发射
与0.13-0.25寿命量子效率及废气排放
微秒的0.75-2.7。配合物呈蓝色排放激烈
纳米与分子振动在457和486的精细结构,
相应的智库(十= 0.18,为y = 0.31)。也就是说,
1排放比已知的更蓝的复杂
铱(dfpy)(图)(7)与智库20(十= 0.16,为y = 0.33)(见图3
和4)。振动精细结构观察到的废气排放
光谱是几个波段卫星重叠的结果
属于不同的电子振动transitions.21一般来说,
从发射带电荷转移(CT)的状态是广阔
和无特色,而配体为中心(立法会)各国通常
给予高度结构化emissions.22因此,我们可以得出结论:
1排放的主要原因是3LC(πC∧ñ f
π* ç∧N)和[dπ(IR)的fπ* ç∧ŋ] 3MLCT过渡。
它已经很好证明,光物理
性能铱(III)配合,特别是废气排放
颜色,取决于配体结构。在我们以前的
报告中,我们描述了15了一系列综合
阳离子铱(Ⅲ)配合物[铱(智商)2(不适用∧北)] þPF6
- (智商
= 1 - phenylisoquinoline),其中的发射波长
可显着调整从586到732纳米。然而,
这些配合物都是红色发光材料。
- 4楼网友:笑迎怀羞
- 2021-01-26 18:49
光光谱。在室温
光致发光(PL)谱1-5 inCH2Cl2如下所示
在图3a、发光的数据中给出了
表1。所有的复合物辐射强烈展现1
与量子效率的0.13-0.25和发射
0.75-2.7μs的。复杂的1展示强烈的蓝色排放
与vibronic精细结构在457和486海里。
对应于挂靠(x = 0.18,y = 0.31)。那就是,这个
1是蓝色的排放比已知的复杂
红外(dfpy)(图)(7)挂靠(20),y = 0.33 0.16(见图3,4
(4)。振动精细结构中观测到的排放
光谱的结果是几个重叠的卫星
那是属于不同的vibronic transitions.21一般,
发射乐队来自美国硝基苯(CT)是广阔的
平凡的物体,而ligand-centered,美国(LC)的典型
因此,emissions.22给予高度结构,我们能得出结论
1的排放的主要归因于3LC(πC∧N f
π-∧)和(dπ(Ir)fπ度∧N]3MLCT过渡。
这已被证实的光物理
(三)的性质,铱特别是发射
颜色,取决于配体的结构。在我们先前的
15我们描述了报告,合成了一系列的
(三)复合物阳离子铱[红外(2)(∧piqþPF6)]
(如piq -
1-phenylisoquinoline)、排放)的波长
从最后就可以明显调谐到732海里。然而,
所有的这些复合体red-emitting材料。在
现在的工作,从蓝色调显著发射颜色
深红色是实现(见图4);发射波长
可调谐到632海里。从457那就是,这个
这些复合物red-shifted显著
扩展长度∧氮分子配体氮素。
另外,发射的2-5广阔和平凡的物体。
加上理论计算
(表2),我们得出这样的结论:三峡工程2-5的排放
为主,
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯