如图,△ADE和△ABC中∠EAD=∠AED=∠BAC=∠BCA=45°,又有∠BAD=∠BCF.
(1)求∠ECF+DAC+∠ECA的度数;
(2)判断ED与FC的位置关系,并对你的结论加以证明.
如图,△ADE和△ABC中∠EAD=∠AED=∠BAC=∠BCA=45°,又有∠BAD=∠BCF.(1)求∠ECF+DAC+∠ECA的度数;(2)判断ED与FC的位置
答案:2 悬赏:30 手机版
解决时间 2021-04-14 22:06
- 提问者网友:泪痣哥哥
- 2021-04-14 05:47
最佳答案
- 五星知识达人网友:慢性怪人
- 2021-04-14 07:12
解:(1)∵∠ECF=∠ECB+∠BCF,
∴∠ECF+∠DAC+∠ECA
=(∠ECB+∠BCF)+∠DAC+∠ECA??? (∠BCF=∠BAD)
=(∠ECB+∠ECA)+(∠DAC+∠BAD)
=∠BCA+∠BAC
=45°+45°
=90°
即∠ECF+DAC+∠ECA=90°;
(2)ED和FC平行,理由如下:
∵∠EAD=∠AED=45°,
∴∠EDA=90°,
∴在C,E,D,A四点组成的凹四边形里,
∠ECA+∠CED+∠CAD=∠EDA=90°
又∵(1)的结论是∠ECF+DAC+∠ECA=90°,
∴∠CED=∠ECF,
∴DE∥CF(内错角相等,两直线平行).解析分析:(1)由题意易得∠ECF+DAC+∠ECA=45°+∠BCF+45°-∠BCF=90°;
(2)由凹四边形ADEC得内角和是360°以及已知易得∠ADE=90°,可得∠ECA+∠CED+∠CAD=∠EDA=90°,又(1)的结论是∠ECF+DAC+∠ECA=90°,∴∠CED=∠ECF,因此由内错角相等即知DE∥CF.点评:此题主要考查了角之间的和差关系、四边形的内角和、平行线的判定等知识点,有点难度,特别是凹四边形的应用不太常见.
∴∠ECF+∠DAC+∠ECA
=(∠ECB+∠BCF)+∠DAC+∠ECA??? (∠BCF=∠BAD)
=(∠ECB+∠ECA)+(∠DAC+∠BAD)
=∠BCA+∠BAC
=45°+45°
=90°
即∠ECF+DAC+∠ECA=90°;
(2)ED和FC平行,理由如下:
∵∠EAD=∠AED=45°,
∴∠EDA=90°,
∴在C,E,D,A四点组成的凹四边形里,
∠ECA+∠CED+∠CAD=∠EDA=90°
又∵(1)的结论是∠ECF+DAC+∠ECA=90°,
∴∠CED=∠ECF,
∴DE∥CF(内错角相等,两直线平行).解析分析:(1)由题意易得∠ECF+DAC+∠ECA=45°+∠BCF+45°-∠BCF=90°;
(2)由凹四边形ADEC得内角和是360°以及已知易得∠ADE=90°,可得∠ECA+∠CED+∠CAD=∠EDA=90°,又(1)的结论是∠ECF+DAC+∠ECA=90°,∴∠CED=∠ECF,因此由内错角相等即知DE∥CF.点评:此题主要考查了角之间的和差关系、四边形的内角和、平行线的判定等知识点,有点难度,特别是凹四边形的应用不太常见.
全部回答
- 1楼网友:上分大魔王
- 2021-04-14 08:50
谢谢解答
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯