如何利用logistic回归模型来预测
答案:2 悬赏:20 手机版
解决时间 2021-04-05 01:47
- 提问者网友:杀生予夺
- 2021-04-04 14:47
如何利用logistic回归模型来预测
最佳答案
- 五星知识达人网友:雾月
- 2021-04-04 15:18
二元logit回归
1.打开数据,依次点击:analyse--regression--binarylogistic,打开二分回归对话框。
2.将因变量和自变量放入格子的列表里,上面的是因变量,下面的是自变量(单变量拉入一个,多因素拉入多个)。
3.设置回归方法,这里选择最简单的方法:enter,它指的是将所有的变量一次纳入到方程。其他方法都是逐步进入的方法。
4.等级资料,连续资料不需要设置虚拟变量。多分类变量需要设置虚拟变量。
虚拟变量ABCD四类,以a为参考,那么解释就是b相对于a有无影响,c相对于a有无影响,d相对于a有无影响。
5.选项里面至少选择95%CI。
点击ok。
统计专业研究生工作室原创,请勿复杂粘贴
1.打开数据,依次点击:analyse--regression--binarylogistic,打开二分回归对话框。
2.将因变量和自变量放入格子的列表里,上面的是因变量,下面的是自变量(单变量拉入一个,多因素拉入多个)。
3.设置回归方法,这里选择最简单的方法:enter,它指的是将所有的变量一次纳入到方程。其他方法都是逐步进入的方法。
4.等级资料,连续资料不需要设置虚拟变量。多分类变量需要设置虚拟变量。
虚拟变量ABCD四类,以a为参考,那么解释就是b相对于a有无影响,c相对于a有无影响,d相对于a有无影响。
5.选项里面至少选择95%CI。
点击ok。
统计专业研究生工作室原创,请勿复杂粘贴
全部回答
- 1楼网友:長槍戰八方
- 2021-04-04 15:55
logistic回归模型,主要是用来对多因素影响的事件进行概率预测,它是普通多元线性回归模型的进一步扩展,logistic模型是非线性模型。比如说我们曾经做过的土地利用评价,就分别用多元线性回归模型和logistic模型进行试验。影响耕地的因素假设有高程、土壤类型、当地人口数量和gdp总量,把上述四种因素作为自变量,某块地是否为耕地的概率为p,即应变量。然后根据已经有的样本数据,求出logistic模型的系数,一般用最大似然法结合牛顿—拉斐逊法解系数,求出f(p)=g(高程,土壤,人口,gdp)的一个回归函数,即logistic模型,然后把全地区的数据代入上式,求出每个地方是否为耕地的概率,用来对土地利用的评价提供科学的依据。希望我的答案能让你满意,我以前就是做这方面研究的。
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯