永发信息网

海伦公式的证明

答案:1  悬赏:40  手机版
解决时间 2021-08-24 19:27
  • 提问者网友:浮克旳回音
  • 2021-08-24 07:50
假设有一个三角形,边长分别为a、b、c,三角形的面积S可由以下公式求得:   S=√[p(p-a)(p-b)(p-c)]   而公式里的p为半周长:

  p=(a+b+c)/2

如何证明?

最佳答案
  • 五星知识达人网友:酒者煙囻
  • 2021-08-24 08:17
证明:海伦公式:若ΔABC的三边长为a、b、c,则
SΔABC=√((a+b+c)×(-a+b+c)×(a-b+c)×(a+b-c))/4(这是海伦公式的变形,“负号“-”从a左则向右经过a、b、c”,负号从x轴负轴向正轴扫描一个周期!我觉得这么记更简单,还设个什么l=(a+b=c)/2啊,多此一举!)
证明:设边c上的高为
h,则有
√(a^2-h^2)+√(b^2-h^2)=c
√(a^2-h^2)=c-√(b^2-h^2)
两边平方,化简得:
2c√(b^2-h^2)=b^2+c^2-a^2
两边平方,化简得:
h=√(b^2-(b^2+c^2-a^2)^2/(4c^2))
SΔABC=ch/2
=c√(b^2-(b^2+c^2-a^2)^2/(4c^2))/2
仔细化简一下,得:
SΔABC=√((a+b+c)×(-a+b+c)×(a-b+c)×(a+b-c))/4

用三角函数证明!
证明:
SΔABC=absinC/2
=ab√(1-(cosC)^2)/2————(1)
∵cosC=(a^2+b^2-c^2)/(2ab)
∴代入(1)式,(仔细)化简得:
SΔABC=√((a+b+c)×(-a+b+c)×(a-b+c)×(a+b-c))/4
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯