如图,以△ABC的三边为边,在BC的同侧分别另作三个等边三角形,即△ABD,△BCE,△ACF.
(1)求证:四边形ADEF是平行四边形;
(2)在△ABC满足什么条件时,四边形ADEF是矩形;
(3)对于任意△ABC,四边形ADEF是否总存在?
如图,以△ABC的三边为边,在BC的同侧分别另作三个等边三角形,即△ABD,△BCE,△ACF.(1)求证:四边形ADEF是平行四边形;(2)在△ABC满足什么条件时
答案:2 悬赏:80 手机版
解决时间 2021-03-21 03:11
- 提问者网友:情歌越听越心酸
- 2021-03-20 20:14
最佳答案
- 五星知识达人网友:天凉才是好个秋
- 2021-03-20 21:07
证明:(1)∵△ABD,△BCE都是等边三角形,
∴∠DBE=∠ABC=60°-∠ABE,AB=BD,BC=BE.
∴△ABC≌△DBE.
∴DE=AC.
又∵AC=AF,
∴DE=AF.
同理可得EF=AD.
∴四边形ADEF是平行四边形.
(2)∵四边形ADEF是平行四边形,∴当∠DAF=90°时,四边形ADEF是矩形,∴∠FAD=90°.
∴∠BAC=360°-∠DAF-∠DAB-∠FAC=360°-90°-60°-60°=150°.
则当∠BAC=150°时,四边形ADEF是矩形;
(3)不一定,当∠BAC=60°时,∠DAF=180°,不存在四边形ADEF.解析分析:(1)可先证明△ABC≌△DBE,可得DE=AC,又有AC=AF,可得DE=AF,同理可得AD=EF,根据两组对边分别相等的四边形是平行四边形,可证四边形ADEF是平行四边形;
(2)如四边形ADEF是矩形,则∠DAF=90°,又有∠BAD=∠FAC=60°,可得∠BAC=150°,故∠BAC=150°时,四边形ADEF是矩形;
(3)不一定,当∠BAC=60°时不存在.点评:本题综合考查等边三角形的性质及三角形内角和为180°、平行四边形和矩形的判定等知识.
∴∠DBE=∠ABC=60°-∠ABE,AB=BD,BC=BE.
∴△ABC≌△DBE.
∴DE=AC.
又∵AC=AF,
∴DE=AF.
同理可得EF=AD.
∴四边形ADEF是平行四边形.
(2)∵四边形ADEF是平行四边形,∴当∠DAF=90°时,四边形ADEF是矩形,∴∠FAD=90°.
∴∠BAC=360°-∠DAF-∠DAB-∠FAC=360°-90°-60°-60°=150°.
则当∠BAC=150°时,四边形ADEF是矩形;
(3)不一定,当∠BAC=60°时,∠DAF=180°,不存在四边形ADEF.解析分析:(1)可先证明△ABC≌△DBE,可得DE=AC,又有AC=AF,可得DE=AF,同理可得AD=EF,根据两组对边分别相等的四边形是平行四边形,可证四边形ADEF是平行四边形;
(2)如四边形ADEF是矩形,则∠DAF=90°,又有∠BAD=∠FAC=60°,可得∠BAC=150°,故∠BAC=150°时,四边形ADEF是矩形;
(3)不一定,当∠BAC=60°时不存在.点评:本题综合考查等边三角形的性质及三角形内角和为180°、平行四边形和矩形的判定等知识.
全部回答
- 1楼网友:忘川信使
- 2021-03-20 21:12
你的回答很对
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯