永发信息网

求不定积分:$(sin x +cos x)/(1+cos^2x) dx

答案:1  悬赏:30  手机版
解决时间 2021-06-08 10:31
  • 提问者网友:火车头
  • 2021-06-07 23:20
求不定积分:$(sin x +cos x)/(1+cos^2x) dx
最佳答案
  • 五星知识达人网友:大漠
  • 2021-06-08 00:27

∫(sin x +cos x)/(1+cos²x) dx=∫(sinx)/(1+cos²(x))dx+∫cosx/(1+cos²x)dx =-∫(dcosx)/(1+cos²x)+∫(dsinx)/(2-sin²x) =-arctan(cosx)+(√2/2)∫(d(sinx/√2))/[1-(sinx/√2)²] 现在令t=sinx/√2 =-arctan(cosx)+(√2/2)∫dt/[1-t²] 此步证明在下方 =-arctan(cosx)+(√2/4)(-ln|sinx/√2-1|+ln|sinx/√2+1|) =-arctan(cosx)+(√2/4)ln[|(sinx/√2+1)/(sinx/√2-1)|] ∫dt/[1-t²] =(1/2)*∫[1/(1-t)+1/(1+t)]dt =(1/2)*{-∫1/(t-1)d(t-1)+∫1/(1+t)d(1+t)} =(1/2)*(-ln|t-1|+ln|t+1|)


我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯