证明函数f(x)=x/x2+1在(0,1)上是增函数
答案:3 悬赏:50 手机版
解决时间 2021-03-14 12:15
- 提问者网友:欲劫无渡
- 2021-03-14 07:52
证明函数f(x)=x/x2+1在(0,1)上是增函数
最佳答案
- 五星知识达人网友:独行浪子会拥风
- 2021-03-14 08:19
f(x)=x/(x²+1)
x∈(0,1)
令0<x1<x2<1
f(x2)-f(x1)
= x2/(x2²+1) - x1/(x1²+1)
= [ x2(x1²+1) - x1(x2²+1) ] / [(x1²+1)(x2²+1)]
= [(x1² x2+ x2 - x1x2²-x1 ] / [(x1²+1)(x2²+1)]
= [(x1² x2-x1) - (x1x2² - x2)] / [(x1²+1)(x2²+1)]
= [x1(x1x2-1) - x2 (x1x2-1)] / [(x1²+1)(x2²+1)]
= [(x1x2-1)(x1- x2)] / [(x1²+1)(x2²+1)]
∵0<x1<x2<1
∴x1x2-1<0;x1- x2<0;(x1²+1)(x2²+1)>0
∴ [(x1x2-1)(x1- x2)] / [(x1²+1)(x2²+1)]>0
∴f(x2)>f(x1),得证。
x∈(0,1)
令0<x1<x2<1
f(x2)-f(x1)
= x2/(x2²+1) - x1/(x1²+1)
= [ x2(x1²+1) - x1(x2²+1) ] / [(x1²+1)(x2²+1)]
= [(x1² x2+ x2 - x1x2²-x1 ] / [(x1²+1)(x2²+1)]
= [(x1² x2-x1) - (x1x2² - x2)] / [(x1²+1)(x2²+1)]
= [x1(x1x2-1) - x2 (x1x2-1)] / [(x1²+1)(x2²+1)]
= [(x1x2-1)(x1- x2)] / [(x1²+1)(x2²+1)]
∵0<x1<x2<1
∴x1x2-1<0;x1- x2<0;(x1²+1)(x2²+1)>0
∴ [(x1x2-1)(x1- x2)] / [(x1²+1)(x2²+1)]>0
∴f(x2)>f(x1),得证。
全部回答
- 1楼网友:一秋
- 2021-03-14 09:51
f(x)=x/(x^2+1)
f'(x) =(x^2+1- 2x^2 )/(x^2+1)^2
= (-x^2+1)/(x^2+1)^2 >0 ;x 在(0,1)
=>f(x)=x/(x^2+1) 在(0,1)上是增函数
- 2楼网友:神鬼未生
- 2021-03-14 08:30
证明:
∵f(-x)=(-x)²+1=x²+1=f(x)
∴f(x)是偶函数
设0≤x1<x2
则x1-x2<0
则f(x1)-f(x2)=(x1)²-(x2)²=(x1+x2)(x1-x2)<0
即f(x1)<f(x2) ∴f(x)是增函数
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯