数据挖掘的方法有哪些
答案:1 悬赏:60 手机版
解决时间 2021-10-18 11:31
- 提问者网友:别再叽里呱啦
- 2021-10-17 16:22
数据挖掘的方法有哪些
最佳答案
- 五星知识达人网友:等灯
- 2021-10-17 17:02
数据挖掘(英语:Data mining),又译为资料探勘、数据采矿。它是数据库知识发现(英语:Knowledge-Discovery in Databases,简称:KDD)中的一个步骤。数据挖掘一般是指从大量的数据中通过算法搜索隐藏于其中信息的过程。数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。分析方法:· 分类 (Classification)· 估计(Estimation)· 预测(Prediction)· 相关性分组或关联规则(Affinity grouping or association rules)· 聚类(Clustering)· 复杂数据类型挖掘(Text, Web ,图形图像,,音频等)经典算法1. C4.5:是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法。2. K-means算法:是一种聚类算法。3.SVM:一种监督式学习的方法,广泛运用于统计分类以及回归分析中4.Apriori :是一种最有影响的挖掘布尔关联规则频繁项集的算法。5.EM:最大期望值法。6.pagerank:是google算法的重要内容。7. Adaboost:是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器然后把弱分类器集合起来,构成一个更强的最终分类器。8.KNN:是一个理论上比较成熟的的方法,也是最简单的机器学习方法之一。9.Naive Bayes:在众多分类方法中,应用最广泛的有决策树模型和朴素贝叶斯(Naive Bayes)10.Cart:分类与回归树,在分类树下面有两个关键的思想,第一个是关于递归地划分自变量空间的想法,第二个是用验证数据进行减枝。
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯