永发信息网

已知直线y=-2x+8交x轴于点A,交y轴于点C,在x轴上A点左边有一点B,并满足|AB|=2,抛物线y=ax2+bx+c经过A、B、C三点.求抛物线的解析式.

答案:2  悬赏:30  手机版
解决时间 2021-01-23 05:23
  • 提问者网友:不爱我么
  • 2021-01-22 15:01
已知直线y=-2x+8交x轴于点A,交y轴于点C,在x轴上A点左边有一点B,并满足|AB|=2,抛物线y=ax2+bx+c经过A、B、C三点.求抛物线的解析式.
最佳答案
  • 五星知识达人网友:底特律间谍
  • 2021-01-22 16:22
解:根据直线的解析式可知:A(4,0),C(0,8),根据|AB|=2,且B在A点左侧,
因此B点的坐标为(2,0).
设抛物线的解析式为y=a(x-4)(x-2).
将C点坐标代入抛物线的解析式中,
即可得出a=1.
因此抛物线的解析式为y=(x-4)(x-2)=x2-6x+8.解析分析:可先根据直线的解析式求出A,C的坐标,然后根据AB的长,求出B点的坐标.进而可用待定系数法求出抛物线的解析式.点评:本题主要考查了待定系数法求二次函数解析式,这是求函数解析式最常用的方法.
全部回答
  • 1楼网友:迷人又混蛋
  • 2021-01-22 16:40
谢谢了
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯