(2014?路南区一模)已知二次函数y=x2-3x-4的图象,将其函数图象在x轴下方的部分沿x轴翻折,图象的其余部
答案:1 悬赏:0 手机版
解决时间 2021-11-21 06:49
- 提问者网友:喧嚣尘世
- 2021-11-21 01:32
(2014?路南区一模)已知二次函数y=x2-3x-4的图象,将其函数图象在x轴下方的部分沿x轴翻折,图象的其余部
最佳答案
- 五星知识达人网友:千杯敬自由
- 2021-11-21 02:06
解答:解:令x2-3x-4=0,
解得:x1=-1,x2=4,
故A,B两点的坐标分别为A(-1,0),B(4,0).
如图,当直线y=x+n(n<1),
经过A点时,可得n=1,
当直线y=x+n经过B点时,
可得n=-4,
∴n的取值范围为-4<n<1;
翻折后的二次函数解析式为二次函数y=-x2+3x+4.
当直线y=x+n与二次函数y=-x2+3x+4的图象只有一个交点时,
x+n=-x2+3x+4,
整理得:x2-2x+n-4=0,
△=4-4(n-4)=20-4n=0,
解得:n=5,
所以n的取值范围为:n>5.
由图可知,符合题意的n的取值范围为:-4<n<1或n>5.
故答案为:-4<n<1或n>5.
解得:x1=-1,x2=4,
故A,B两点的坐标分别为A(-1,0),B(4,0).
如图,当直线y=x+n(n<1),
经过A点时,可得n=1,
当直线y=x+n经过B点时,
可得n=-4,
∴n的取值范围为-4<n<1;
翻折后的二次函数解析式为二次函数y=-x2+3x+4.
当直线y=x+n与二次函数y=-x2+3x+4的图象只有一个交点时,
x+n=-x2+3x+4,
整理得:x2-2x+n-4=0,
△=4-4(n-4)=20-4n=0,
解得:n=5,
所以n的取值范围为:n>5.
由图可知,符合题意的n的取值范围为:-4<n<1或n>5.
故答案为:-4<n<1或n>5.
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯