【欧拉公式证明】复数中的欧拉公式是如何推导的
答案:2 悬赏:0 手机版
解决时间 2021-03-11 10:47
- 提问者网友:几叶到寒
- 2021-03-11 07:03
【欧拉公式证明】复数中的欧拉公式是如何推导的
最佳答案
- 五星知识达人网友:十鸦
- 2021-03-11 07:37
【答案】 e^ix=cosx+isinx,e是自然对数的底,i是虚数单位.e^ix=cosx+isinx的证明:因为e^x=1+x/1!+x^2/2!+x^3/3!+x^4/4!+……cos x=1-x^2/2!+x^4/4!-x^6/6!……sin x=x-x^3/3!+x^5/5!-x^7/7!……在e^x的展开式中把x换成±ix.(±i)^2=-1, (±i)^3=∓i, (±i)^4=1 ……e^±ix=1±ix/1!-x^2/2!∓ix^3/3!+x^4/4!……=(1-x^2/2!+……)±i(x-x^3/3!……)所以e^±ix=cosx±isinx将公式里的x换成-x,得到:e^-ix=cosx-isinx,然后采用两式相加减的方法得到:
sinx=(e^ix-e^-ix)/(2i),cosx=(e^ix+e^-ix)/2.\叫做欧拉公式.将e^ix=cosx+isinx中的x取作π就得到:
e^iπ+1=0.这个也叫做欧拉公式
sinx=(e^ix-e^-ix)/(2i),cosx=(e^ix+e^-ix)/2.\叫做欧拉公式.将e^ix=cosx+isinx中的x取作π就得到:
e^iπ+1=0.这个也叫做欧拉公式
全部回答
- 1楼网友:长青诗
- 2021-03-11 08:54
谢谢了
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯