永发信息网

菱形各边中点在以对角线的交点为圆心的同一个圆上

答案:1  悬赏:50  手机版
解决时间 2021-04-15 22:21
  • 提问者网友:雨不眠的下
  • 2021-04-15 17:43

求证:菱形各边中点在以对角线的交点为圆心的同一个圆上。 已知:如图,菱形ABCD的对角线AC和BD相交于点O。 求证:菱形ABCD各边中点M、N、P、Q在以O为圆心的同一个圆上。

为什么OE=AB/2,OF=BC/2,OM=CD/2,ON=AD/2?

为什么OE=AB/2,OF=BC/2,OM=CD/2,ON=AD/2?

为什么OE=AB/2,OF=BC/2,OM=CD/2,ON=AD/2?

最佳答案
  • 五星知识达人网友:长青诗
  • 2021-04-15 18:27
已知:如图,菱形ABCD的对角线AC和BD相交于点O.
求证:菱形ABCD各边中点M、N、P、Q在以O为圆心的同一个圆上.
证明:∵四边形ABCD是菱形,
∴AC⊥BD,垂足为O,且AB=BC=CD=DA,
而M、N、P、Q分别是边AB、BC、CD、DA的中点,
∴OM=ON=OP=OQ=
1
2
AB,
∴M、N、P、Q四点在以O为圆心OM为半径的圆上.
所以菱形各边中点在以对角线的交点为圆心的同一个圆上.
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯