如图,P是等边三角形ABC内的一点,连接PA,PB,PC,以BP为边作∠PBQ=60°,且BQ=BP,连接CQ.观察并猜想AP与CQ之间的大小关系,并证明你的结论.
答案:2 悬赏:10 手机版
解决时间 2021-04-09 23:42
- 提问者网友:两耳就是菩提
- 2021-04-08 23:34
如图,P是等边三角形ABC内的一点,连接PA,PB,PC,以BP为边作∠PBQ=60°,且BQ=BP,连接CQ.观察并猜想AP与CQ之间的大小关系,并证明你的结论.
最佳答案
- 五星知识达人网友:笑迎怀羞
- 2021-04-08 23:43
猜想:AP=CQ
证明:在△ABP与△CBQ中,
∵AB=CB,BP=BQ,∠ABC=∠PBQ=60°,
∴∠ABP=∠ABC-∠PBC=∠PBQ-∠PBC=∠CBQ,
∴△ABP≌△CBQ,
∴AP=CQ解析分析:先猜想AP=CQ,再在△ABP与△CBQ中,由AB=CB,BP=BQ,∠ABC=∠PBQ=60°可得出∠ABP=∠CBQ,进而可判断出△ABP≌△CBQ,由全等三角形的对应边相等即可得出结论.点评:本题考查的是等边三角形的性质及全等三角形的判定与性质,根据题意判断出△ABP≌△CBQ是解答此题的关键.
证明:在△ABP与△CBQ中,
∵AB=CB,BP=BQ,∠ABC=∠PBQ=60°,
∴∠ABP=∠ABC-∠PBC=∠PBQ-∠PBC=∠CBQ,
∴△ABP≌△CBQ,
∴AP=CQ解析分析:先猜想AP=CQ,再在△ABP与△CBQ中,由AB=CB,BP=BQ,∠ABC=∠PBQ=60°可得出∠ABP=∠CBQ,进而可判断出△ABP≌△CBQ,由全等三角形的对应边相等即可得出结论.点评:本题考查的是等边三角形的性质及全等三角形的判定与性质,根据题意判断出△ABP≌△CBQ是解答此题的关键.
全部回答
- 1楼网友:山河有幸埋战骨
- 2021-04-08 23:51
我也是这个答案
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯