永发信息网

初二数学因式分解习题

答案:5  悬赏:30  手机版
解决时间 2021-03-11 18:12
  • 提问者网友:相思似海深
  • 2021-03-11 12:56
给我出一些初二数学因式分解的习题,要包含所有类型的,并且要附上解法以及答案,越多越好,分数不是问题。
要苏教版滴~~~
最佳答案
  • 五星知识达人网友:神鬼未生
  • 2021-03-11 14:09
§2.1分解因式
教学目的和要求: 经历从分解因数到分解因式的类比过程;了解分解因式的意义,以及它与整式乘法的关系;感受分解因式在解决相关问题中的作用.
教学重点和难点:
重点:利用因数分解可以简化运算、研究整数的性质, 以类比因数分解来引入因式分解的学习
难点:每一步变形的依据
快速反应:
1. 根据因式分解的概念,判断下列各等式哪些是因式分解,哪些不是,为什么?
(1)6abxy=2ab•3xy;
(2)
(3)(2x-1)•2=4x-2
(4)4x2-4x+1=4x(x-1)+1.
2. 填空
(1)(2m+n)(2m-n)=4m2-n2此运算属于 。
(2)x2-2x+1=(x-1)2此运算属于 。
(3)配完全平方式 49x2+y2+ =( -y)2
自主学习:
1. 993-99能被100整除吗?你是怎样想的?与同伴交流。
小时是这样做的?
993-99
=99×992-99×1
=99(992-1)
=99×9800
=98×99×100
所以,993-99能被100整除。
(1) 小明在判断993-99能否被100整除时是怎么做的?
(2) 993-99还能被哪些正整数整除。
答案:(1)小明将993-99通过分解因数的方法,说明993-99是100的倍数,故993-99能被100整除。
(2)还能被98,99,49,11等正整数整除。
2. 计算下列各式:
(1)(m+4)(m-4)= ;
(2)(y-3)2= ;
(3)3x(x-1)= ;
(4)m(a+b+c)= .
根据上面的算式填空:
(1)3x2-3x=( )( )
(2)m2-16=( )( )
(3)ma+mb+mc=( )( )
(4)y2-6y+9=( )( )
请问,通过以上两组练习的演练,你认为这两组练习之间有什么关系?
答案:第一组:
(1)m2-16;(2)y2-6y+9;(3)3x2-3x;(4)ma+mb+mc;
第二组:
(1)3x(x-1);(2)(m+4)(m-4);(3)m(a+b+c);(4)(y-3)2。
第一组是把多项式乘以多项式展开整理之后的结果,第二组是把多项式写成了几个固式的积的形式,它们这间恰好是一个互逆的关系。
3. 下列各式中由等号的左边到右边的变形,是因式分解的是( )
A.(x+3)(x-3)=x2-9 B.x2+x-5=(x-2)(x+3)+1
C.a2b+ab2=ab(a+b) D.
答案:C
4. 证明:一个三位数的百位数字与个位数字交换位置,则新数与原数之差能被99整除。
证明:设原数百位数字为x,十位数字为y,个位数字为z,则原数可表示为100x+10y+z,交换位置后数字为100 z +10y+ x。
则:(100 z +10y+ x)-(100x+10y+z)
=100 z-100x+x-z
=100(z-x)-(z-x)
=99(z-x)
则原结论成立。
5.(陕西省,中考题)如图3-1①所示,在边长为a的正方形中挖掉一个边长了b的小正方形(a>b),把余下的部分剪拼成一个矩形(如图②所示),通过教育处两个图形(阴影部分)的面积,验证了一个等式,则这个等式是( )
A.(a+2b)(a-b)=a2+ab-2b2 B.(a+b)2=a2+2ab+b2
C.(a-b)2=a2-2ab+b2 D.a2-b2=(a+b)(a-b)
答案:D。
§2.2提公因式法
教学目的和要求: 经历探索多项式各项公因式的过程,并在具体问题中,能确定多项式各项的公因式;会用提公因式法把多项式分解因式(多项式中的字母指数仅限于正整数的情况);进一步了解分解因式的意义,加强学生的直觉思维并渗透化归的思想方法.
教学重点和难点:
重点:是让学生理解提公因式的意义与原理。
难点:能确定多项式各项的公因式
关键:是让学生理解提公因式的意义与原理。
快速反应:
1. 2m2x+4mx2的公因式___________。
2. a2b+ab2+a3b3的公因式_____________。
3. 5m(a-b)+10n(b-a)的公因式____________。
4. -5xy-15xyz-20x2y=-5xy(____________).
自主学习:
1. 张老师准备给航天建模竞赛中获奖的同学颁发奖品。他来到文具商店,经过选择决定买单价16元的钢笔10支,5元一本的笔记本10本,4元一瓶的墨水10瓶,由于购买物品较多,商品售货员决定以9折出售,问共需多少钱。
关于这一问题两位同学给出了各自的做法。
方法一:16×10×90%+5×10×90%+4×10×90%=144+45+36=225(元)
方法二:16×10×90%+5×10×90%+4×10×90%=10×90%(16+5+4)=225(元)
请问:两位同学计算的方法哪一位更好?为什么?
答案:第二位同学(第二种方法)更好,因为第二种方法将因数10×90%放在括号外,只进行过一次计算,很明显减小计算量。
2. (1)多项式ab+bc各项都含有相同的因式吗?多项式3x2+x呢?多项式mb2+nb呢?
(2)将上面的多项式分别写成几个因式的乘积,说明你的理由,并与同位交流。
答案:(1)多项式ab+bc各项都含有相同的因式b,多项式3x2+x各项都含有相同的公因式x,多项mb2+nb各项都含有相同的公因式b。
3. 将下列各式分解因式:
3x+6; 7x2-21x; 8a3b2-12ab3c+abc; a(x-3)+2b(x-3); 5(x-y)3+10(y-x)2。
答案:(1)3x+6=3x+3×2=3(x+2) (2)7x2-21x=7x•x-7x•3=7x(x-3)
(3)8a3b2-12ab3c+abc=ab•8a2b-ab•12b2c+ab•c=ab(8a2b-12b2c+c)
(4)a(x-3)+2b(x-3)=(x-3)(a+2b)
(5)5(x-y)3+10(y-x)2=5(x-y)3+10[-(x-y)]2=5(x-y)3+10(x-y)2=5(x-y)2(x-y+2)
4. 把下列各式分解因式:
(1)3x2-6xy+x (2)-4m3+16m2-26m
答案:(1)3x2-6xy+x=x(3x-6y+1) (2)-4m3+16m2-26m=-2m(2m2-8m+13)
5. 把 分解因式
答案: =
6. 把下列各式分解因式:
(1) 4q(1-p)3+2(p-1)2
(2) 3m(x-y)-n(y-x)
(3) m(5ax+ay-1)-m(3ax-ay-1)
答案:(1)4q(1-p)3+2(p-1)2=2(1-p)2(2q-2pq+1)
(2)3m(x-y)-n(y-x)=(x-y)(3m+n)
(3)m(5ax+ay-1)-m(3ax-ay-1)=2am(x+y)
7. 计算
(1) 已知a+b=13,ab=40,求a2b+ab2的值;
(2) 1998+19982-19992
答案:(1)a2b+ab2=ab(a+b),当a+b=13时,原式=40×13=520
(2)1998+19982-19992=-1999
8. 比较2002×20032003与2003×20022002的大小。
解答:设2002=x
∵2002×20032003-2003×20022002=x•10001(x+1)-(x+1)•10001 x=0
∴2002×20032003=2003×20022002
§2.3运用公式法
教学目的和要求: 经历通过整式乘法的平方差公式、完全平方公式逆向得出用公式法分解因式的方法的过程,发展学生的逆向思维和推理能力;运用公式法(直接用公式不超过两次)分解因式(指数是正整数)
教学重点和难点:
重点:发展学生的逆向思维和推理能力
难点:能够理解、归纳因式分解变形的特点,同时也可以充分感受到这种互逆变形的过程和数学知识的整体性.
快速反应:
1. 分解因式:①x2-y2= ; x2-4= ;②a2b2-2ab+1= ; = ;
2. 下列多项式中能用平方差公式分解因式的是( )
A.16a2-25b3 B.-16a2-25b2 C.16a2+25b2 D.-(16a2-25b2)
3. 下列各式不能用完全平方公式分解的是( )
A.x2+y2+2xy B.-x2+y2+2xy C.-x2-y2-2xy D.-x2-y2+2xy
4. 把下列各式分解因式:
(1)9a2m2-16b2n2; (2) ; (3)9(a+b)2-12(a+b)+4 (4)
自主学习:
1. (1)观察多项式x2-25.9x-y2,它们有什么共同特证?
(2)将它们分别写成两个因式的乘积,说明你的理由,并与同伴交流。
答案:(1)多项式的各项都能写成平方的形式。如x2-25中:x2本身是平方的形式,25=52也是平方的形式;9x-y2也是如此。
(2)逆用乘法公式(a+b)(a-b)=a2-b2,可知x2-25= x2-52=(x+5)(x-5),9x2-y2=(3x)2-y2=(3x+y)(3x-y).
2. 把乘法方式
(a+b)2=a2+2ab+b2, (a-b)2=a2-2ab+b2,反过来,就得到 a2+2ab+b2=(a+b)2, a2-2ab+b2=(a-b)2
上面这个变化过程是分解因式吗?说明你的理由。
答案:a2±2ab+b2=(a±b)2是分解因式。因为(a+b)2是因式的乘积的形式,(a-b)2也是因式的乘积的形式。
3. 把下列各式分解因式:
(1)25-16x2; (2) (3)9(m+n)2-(m-n)2; (4)2x3-8x;
(5)x2+14x+49; (6)(m+m)2-6(m+n)+9(7)3ax2+6axy+3ay2; (8)-x2-4y2+4xy
答案:
(1)25-16x2=(5+4x)(5-4x) (2) =
(3)9(m+n)2-(m-n)2=4(2m+n)(m+2n)
(4)2x3-8x=2x(x2-4)=2x(x2-2x)=2x(x+2)(x-2)
(5)x2+14x+49= x2+2×7x+72=(x+7)2
(6)(m+m)2-6(m+n)+9=[(m+n)-3]2=(m+n-3)2
(7)3ax2+6axy+3ay2=3a(x2+2xy+y2)=3a(x+y)2
(8)-x2-4y2+4xy=-(x-2y)2
4. 把下列各式分解因式:
(1) ; (2)(a+b)2-1; (3)-(x+2)2+16(x-1)2;
(4)
答案: (1) ; (2)(a+b)2-1=(a+b+1)(a+b-1)
(3)-(x+2)2+16(x-1)2=3(x-2)(5x-2);
(4)
5. 把下列各式分解因式:
(1)m2-12m+36; (2)8a-4a2-4;
(3) ; (4) 。
答案:(1)m2-12m+36=(m-6)2; (2)8a-4a2-4=-4(a-1)2;
(3) ;
(4)
6. 求证(x+1)(x+2)(x+3)(x+4)+1是一个完全平方式。
证明一:原式=(x2+5x+4)(x2+5x+6)+1
=(x2+5x)2+10(x2+5x)+25
=(x2+5x+5)2 ∴原命题成立
证明二:原式=[(x+1)(x+4)][(x+2)(x+3)]+1
=(x2+5x+4)(x2+5x+6)+1
令a=x2+5x+4,则x2+5x+6=a+2
原式=a(a+2)+1=(a+1)2
即(x+1)(x+2)(x+3)(x+4)+1=(x2+5x+5)2
证明三:原式=(x2+5x+4)(x2+5x+6)+1

原式=(x2+5x+5-1)(x2+5x+5+1)+1
=(m-1)(m+1)+1=m2=(x2+5x+5)2
7. 已知a,b,c是△ABC的三条边,且满足a2+b2+c2-ab-bc-ca=0试判断△ABC的形状。
答案:∵a2+b2+c2-ab-bc-ca=0
∴2a2+2b2+2c2-2ab-2bc-2ac=0
即a2-2ab+b2+b2-2bc+c2+a2-2ac+c2=0
∴(a-b) 2+(b-c) 2+(a-c) 2=0
∵(a-b) 2≥0,(b-c) 2≥0,(a-c) 2≥0
∴a-b=0,b-c=0,a-c=0
∴a=b,b=c,a=c
∴这个三角形是等边三角形.
8. 设x+2z=3y,试判断x2-9y2+4z2+4xz的值是不是定值?
答案:当x+2z=3y时,x2-9y2+4z2+4xz的值为定值0。
9. 分解因式:
10. 分解因式:
全部回答
  • 1楼网友:封刀令
  • 2021-03-11 17:08
(2+1)(2*2+1)(2*2*2*2+1)(2*2*2*2*2*2*2*2+1)+1 =(2-1)(2+1)(2*2+1)(2*2*2*2+1)(2*2*2*2*2*2*2*2+1)+1 =(2*2-1)(2*2+1)(2*2*2*2+1)(2*2*2*2*2*2*2*2+1)+1 =(2*2*2*2-1)(2*2*2*2+1)(2*2*2*2*2*2*2*2+1)+1 =(2*2*2*2*2*2*2*2-1)(2*2*2*2*2*2*2*2+1)+1 =(2*2*2*2*2*2*2*2*2*2*2*2*2*2*2*2-1)+1 =2*2*2*2*2*2*2*2*2*2*2*2*2*2*2*2
  • 2楼网友:骨子里都是戏
  • 2021-03-11 16:37
6. 求证(x+1)(x+2)(x+3)(x+4)+1是一个完全平方式。 证明一:原式=(x2+5x+4)(x2+5x+6)+1 =(x2+5x)2+10(x2+5x)+25 =(x2+5x+5)2 ∴原命题成立 证明二:原式=[(x+1)(x+4)][(x+2)(x+3)]+1 =(x2+5x+4)(x2+5x+6)+1 令a=x2+5x+4,则x2+5x+6=a+2 原式=a(a+2)+1=(a+1)2 即(x+1)(x+2)(x+3)(x+4)+1=(x2+5x+5)2 证明三:原式=(x2+5x+4)(x2+5x+6)+1 令 原式=(x2+5x+5-1)(x2+5x+5+1)+1 =(m-1)(m+1)+1=m2=(x2+5x+5)2
  • 3楼网友:逃夭
  • 2021-03-11 15:39
6. 求证(x+1)(x+2)(x+3)(x+4)+1是一个完全平方式。 证明一:原式=(x2+5x+4)(x2+5x+6)+1 =(x2+5x)2+10(x2+5x)+25 =(x2+5x+5)2 ∴原命题成立 证明二:原式=[(x+1)(x+4)][(x+2)(x+3)]+1 =(x2+5x+4)(x2+5x+6)+1 令a=x2+5x+4,则x2+5x+6=a+2 原式=a(a+2)+1=(a+1)2 即(x+1)(x+2)(x+3)(x+4)+1=(x2+5x+5)2 证明三:原式=(x2+5x+4)(x2+5x+6)+1 令 原式=(x2+5x+5-1)(x2+5x+5+1)+1 =(m-1)(m+1)+1=m2=(x2+5x+5)2 2.1分解因式 教学目的和要求: 经历从分解因数到分解因式的类比过程;了解分解因式的意义,以及它与整式乘法的关系;感受分解因式在解决相关问题中的作用. 教学重点和难点: 重点:利用因数分解可以简化运算、研究整数的性质, 以类比因数分解来引入因式分解的学习 难点:每一步变形的依据 快速反应: 1. 根据因式分解的概念,判断下列各等式哪些是因式分解,哪些不是,为什么? (1)6abxy=2ab•3xy; (2) (3)(2x-1)•2=4x-2 (4)4x2-4x+1=4x(x-1)+1. 2. 填空 (1)(2m+n)(2m-n)=4m2-n2此运算属于 。 (2)x2-2x+1=(x-1)2此运算属于 。 (3)配完全平方式 49x2+y2+ =( -y)2 自主学习: 1. 993-99能被100整除吗?你是怎样想的?与同伴交流。 小时是这样做的? 993-99 =99×992-99×1 =99(992-1) =99×9800 =98×99×100 所以,993-99能被100整除。 (1) 小明在判断993-99能否被100整除时是怎么做的? (2) 993-99还能被哪些正整数整除。 答案:(1)小明将993-99通过分解因数的方法,说明993-99是100的倍数,故993-99能被100整除。 (2)还能被98,99,49,11等正整数整除。 2. 计算下列各式: (1)(m+4)(m-4)= ; (2)(y-3)2= ; (3)3x(x-1)= ; (4)m(a+b+c)= . 根据上面的算式填空: (1)3x2-3x=( )( ) (2)m2-16=( )( ) (3)ma+mb+mc=( )( ) (4)y2-6y+9=( )( ) 请问,通过以上两组练习的演练,你认为这两组练习之间有什么关系? 答案:第一组: (1)m2-16;(2)y2-6y+9;(3)3x2-3x;(4)ma+mb+mc; 第二组: (1)3x(x-1);(2)(m+4)(m-4);(3)m(a+b+c);(4)(y-3)2。 第一组是把多项式乘以多项式展开整理之后的结果,第二组是把多项式写成了几个固式的积的形式,它们这间恰好是一个互逆的关系。 3. 下列各式中由等号的左边到右边的变形,是因式分解的是( ) A.(x+3)(x-3)=x2-9 B.x2+x-5=(x-2)(x+3)+1 C.a2b+ab2=ab(a+b) D. 答案:C 4. 证明:一个三位数的百位数字与个位数字交换位置,则新数与原数之差能被99整除。 证明:设原数百位数字为x,十位数字为y,个位数字为z,则原数可表示为100x+10y+z,交换位置后数字为100 z +10y+ x。 则:(100 z +10y+ x)-(100x+10y+z) =100 z-100x+x-z =100(z-x)-(z-x) =99(z-x) 则原结论成立。 5.(陕西省,中考题)如图3-1①所示,在边长为a的正方形中挖掉一个边长了b的小正方形(a>b),把余下的部分剪拼成一个矩形(如图②所示),通过教育处两个图形(阴影部分)的面积,验证了一个等式,则这个等式是( ) A.(a+2b)(a-b)=a2+ab-2b2 B.(a+b)2=a2+2ab+b2 C.(a-b)2=a2-2ab+b2 D.a2-b2=(a+b)(a-b) 答案:D。 §2.2提公因式法 教学目的和要求: 经历探索多项式各项公因式的过程,并在具体问题中,能确定多项式各项的公因式;会用提公因式法把多项式分解因式(多项式中的字母指数仅限于正整数的情况);进一步了解分解因式的意义,加强学生的直觉思维并渗透化归的思想方法. 教学重点和难点: 重点:是让学生理解提公因式的意义与原理。 难点:能确定多项式各项的公因式 关键:是让学生理解提公因式的意义与原理。 快速反应: 1. 2m2x+4mx2的公因式___________。 2. a2b+ab2+a3b3的公因式_____________。 3. 5m(a-b)+10n(b-a)的公因式____________。 4. -5xy-15xyz-20x2y=-5xy(____________). 自主学习: 1. 张老师准备给航天建模竞赛中获奖的同学颁发奖品。他来到文具商店,经过选择决定买单价16元的钢笔10支,5元一本的笔记本10本,4元一瓶的墨水10瓶,由于购买物品较多,商品售货员决定以9折出售,问共需多少钱。 关于这一问题两位同学给出了各自的做法。 方法一:16×10×90%+5×10×90%+4×10×90%=144+45+36=225(元) 方法二:16×10×90%+5×10×90%+4×10×90%=10×90%(16+5+4)=225(元) 请问:两位同学计算的方法哪一位更好?为什么? 答案:第二位同学(第二种方法)更好,因为第二种方法将因数10×90%放在括号外,只进行过一次计算,很明显减小计算量。 2. (1)多项式ab+bc各项都含有相同的因式吗?多项式3x2+x呢?多项式mb2+nb呢? (2)将上面的多项式分别写成几个因式的乘积,说明你的理由,并与同位交流。 答案:(1)多项式ab+bc各项都含有相同的因式b,多项式3x2+x各项都含有相同的公因式x,多项mb2+nb各项都含有相同的公因式b。 3. 将下列各式分解因式: 3x+6; 7x2-21x; 8a3b2-12ab3c+abc; a(x-3)+2b(x-3); 5(x-y)3+10(y-x)2。 答案:(1)3x+6=3x+3×2=3(x+2) (2)7x2-21x=7x•x-7x•3=7x(x-3) (3)8a3b2-12ab3c+abc=ab•8a2b-ab•12b2c+ab•c=ab(8a2b-12b2c+c) (4)a(x-3)+2b(x-3)=(x-3)(a+2b) (5)5(x-y)3+10(y-x)2=5(x-y)3+10[-(x-y)]2=5(x-y)3+10(x-y)2=5(x-y)2(x-y+2) 4. 把下列各式分解因式: (1)3x2-6xy+x (2)-4m3+16m2-26m 答案:(1)3x2-6xy+x=x(3x-6y+1) (2)-4m3+16m2-26m=-2m(2m2-8m+13) 5. 把 分解因式 答案: = 6. 把下列各式分解因式: (1) 4q(1-p)3+2(p-1)2 (2) 3m(x-y)-n(y-x) (3) m(5ax+ay-1)-m(3ax-ay-1) 答案:(1)4q(1-p)3+2(p-1)2=2(1-p)2(2q-2pq+1) (2)3m(x-y)-n(y-x)=(x-y)(3m+n) (3)m(5ax+ay-1)-m(3ax-ay-1)=2am(x+y) 7. 计算 (1) 已知a+b=13,ab=40,求a2b+ab2的值; (2) 1998+19982-19992 答案:(1)a2b+ab2=ab(a+b),当a+b=13时,原式=40×13=520 (2)1998+19982-19992=-1999 8. 比较2002×20032003与2003×20022002的大小。 解答:设2002=x ∵2002×20032003-2003×20022002=x•10001(x+1)-(x+1)•10001 x=0 ∴2002×20032003=2003×20022002 §2.3运用公式法 教学目的和要求: 经历通过整式乘法的平方差公式、完全平方公式逆向得出用公式法分解因式的方法的过程,发展学生的逆向思维和推理能力;运用公式法(直接用公式不超过两次)分解因式(指数是正整数) 教学重点和难点: 重点:发展学生的逆向思维和推理能力 难点:能够理解、归纳因式分解变形的特点,同时也可以充分感受到这种互逆变形的过程和数学知识的整体性. 快速反应: 1. 分解因式:①x2-y2= ; x2-4= ;②a2b2-2ab+1= ; = ; 2. 下列多项式中能用平方差公式分解因式的是( ) A.16a2-25b3 B.-16a2-25b2 C.16a2+25b2 D.-(16a2-25b2) 3. 下列各式不能用完全平方公式分解的是( ) A.x2+y2+2xy B.-x2+y2+2xy C.-x2-y2-2xy D.-x2-y2+2xy 4. 把下列各式分解因式: (1)9a2m2-16b2n2; (2) ; (3)9(a+b)2-12(a+b)+4 (4) 自主学习: 1. (1)观察多项式x2-25.9x-y2,它们有什么共同特证? (2)将它们分别写成两个因式的乘积,说明你的理由,并与同伴交流。 答案:(1)多项式的各项都能写成平方的形式。如x2-25中:x2本身是平方的形式,25=52也是平方的形式;9x-y2也是如此。 (2)逆用乘法公式(a+b)(a-b)=a2-b2,可知x2-25= x2-52=(x+5)(x-5),9x2-y2=(3x)2-y2=(3x+y)(3x-y). 2. 把乘法方式 (a+b)2=a2+2ab+b2, (a-b)2=a2-2ab+b2,反过来,就得到 a2+2ab+b2=(a+b)2, a2-2ab+b2=(a-b)2 上面这个变化过程是分解因式吗?说明你的理由。 答案:a2±2ab+b2=(a±b)2是分解因式。因为(a+b)2是因式的乘积的形式,(a-b)2也是因式的乘积的形式。 3. 把下列各式分解因式: (1)25-16x2; (2) (3)9(m+n)2-(m-n)2; (4)2x3-8x; (5)x2+14x+49; (6)(m+m)2-6(m+n)+9(7)3ax2+6axy+3ay2; (8)-x2-4y2+4xy 答案: (1)25-16x2=(5+4x)(5-4x) (2) = (3)9(m+n)2-(m-n)2=4(2m+n)(m+2n) (4)2x3-8x=2x(x2-4)=2x(x2-2x)=2x(x+2)(x-2) (5)x2+14x+49= x2+2×7x+72=(x+7)2 (6)(m+m)2-6(m+n)+9=[(m+n)-3]2=(m+n-3)2 (7)3ax2+6axy+3ay2=3a(x2+2xy+y2)=3a(x+y)2 (8)-x2-4y2+4xy=-(x-2y)2 4. 把下列各式分解因式: (1) ; (2)(a+b)2-1; (3)-(x+2)2+16(x-1)2; (4) 答案: (1) ; (2)(a+b)2-1=(a+b+1)(a+b-1) (3)-(x+2)2+16(x-1)2=3(x-2)(5x-2); (4) 5. 把下列各式分解因式: (1)m2-12m+36; (2)8a-4a2-4; (3) ; (4) 。 答案:(1)m2-12m+36=(m-6)2; (2)8a-4a2-4=-4(a-1)2; (3) ; (4) 6. 求证(x+1)(x+2)(x+3)(x+4)+1是一个完全平方式。 证明一:原式=(x2+5x+4)(x2+5x+6)+1 =(x2+5x)2+10(x2+5x)+25 =(x2+5x+5)2 ∴原命题成立 证明二:原式=[(x+1)(x+4)][(x+2)(x+3)]+1 =(x2+5x+4)(x2+5x+6)+1 令a=x2+5x+4,则x2+5x+6=a+2 原式=a(a+2)+1=(a+1)2 即(x+1)(x+2)(x+3)(x+4)+1=(x2+5x+5)2 证明三:原式=(x2+5x+4)(x2+5x+6)+1 令 原式=(x2+5x+5-1)(x2+5x+5+1)+1 =(m-1)(m+1)+1=m2=(x2+5x+5)2 7. 已知a,b,c是△ABC的三条边,且满足a2+b2+c2-ab-bc-ca=0试判断△ABC的形状。 答案:∵a2+b2+c2-ab-bc-ca=0 ∴2a2+2b2+2c2-2ab-2bc-2ac=0 即a2-2ab+b2+b2-2bc+c2+a2-2ac+c2=0 ∴(a-b) 2+(b-c) 2+(a-c) 2=0 ∵(a-b) 2≥0,(b-c) 2≥0,(a-c) 2≥0 ∴a-b=0,b-c=0,a-c=0 ∴a=b,b=c,a=c ∴这个三角形是等边三角形. 8. 设x+2z=3y,试判断x2-9y2+4z2+4xz的值是不是定值? 答案:当x+2z=3y时,x2-9y2+4z2+4xz的值为定值0。 9. 分解因式: 10. 分解因式:
  • 4楼网友:低音帝王
  • 2021-03-11 15:10
因式分解练习题 一、填空题: 2.(a-3)(3-2a)=_______(3-a)(3-2a); 12.若m2-3m+2=(m+a)(m+b),则a=______,b=______; 15.当m=______时,x2+2(m-3)x+25是完全平方式. 二、选择题: 1.下列各式的因式分解结果中,正确的是 [ ] a.a2b+7ab-b=b(a2+7a) b.3x2y-3xy-6y=3y(x-2)(x+1) c.8xyz-6x2y2=2xyz(4-3xy) d.-2a2+4ab-6ac=-2a(a+2b-3c) 2.多项式m(n-2)-m2(2-n)分解因式等于 [ ] a.(n-2)(m+m2) b.(n-2)(m-m2) c.m(n-2)(m+1) d.m(n-2)(m-1) 3.在下列等式中,属于因式分解的是 [ ] a.a(x-y)+b(m+n)=ax+bm-ay+bn b.a2-2ab+b2+1=(a-b)2+1 c.-4a2+9b2=(-2a+3b)(2a+3b) d.x2-7x-8=x(x-7)-8 4.下列各式中,能用平方差公式分解因式的是 [ ] a.a2+b2 b.-a2+b2 c.-a2-b2 d.-(-a2)+b2 5.若9x2+mxy+16y2是一个完全平方式,那么m的值是 [ ] a.-12 b.±24 c.12 d.±12 6.把多项式an+4-an+1分解得 [ ] a.an(a4-a) b.an-1(a3-1) c.an+1(a-1)(a2-a+1) d.an+1(a-1)(a2+a+1) 7.若a2+a=-1,则a4+2a3-3a2-4a+3的值为 [ ] a.8 b.7 c.10 d.12 8.已知x2+y2+2x-6y+10=0,那么x,y的值分别为 [ ] a.x=1,y=3 b.x=1,y=-3 c.x=-1,y=3 d.x=1,y=-3 9.把(m2+3m)4-8(m2+3m)2+16分解因式得 [ ] a.(m+1)4(m+2)2 b.(m-1)2(m-2)2(m2+3m-2) c.(m+4)2(m-1)2 d.(m+1)2(m+2)2(m2+3m-2)2 10.把x2-7x-60分解因式,得 [ ] a.(x-10)(x+6) b.(x+5)(x-12) c.(x+3)(x-20) d.(x-5)(x+12) 11.把3x2-2xy-8y2分解因式,得 [ ] a.(3x+4)(x-2) b.(3x-4)(x+2) c.(3x+4y)(x-2y) d.(3x-4y)(x+2y) 12.把a2+8ab-33b2分解因式,得 [ ] a.(a+11)(a-3) b.(a-11b)(a-3b) c.(a+11b)(a-3b) d.(a-11b)(a+3b) 13.把x4-3x2+2分解因式,得 [ ] a.(x2-2)(x2-1) b.(x2-2)(x+1)(x-1) c.(x2+2)(x2+1) d.(x2+2)(x+1)(x-1) 14.多项式x2-ax-bx+ab可分解因式为 [ ] a.-(x+a)(x+b) b.(x-a)(x+b) c.(x-a)(x-b) d.(x+a)(x+b) 15.一个关于x的二次三项式,其x2项的系数是1,常数项是-12,且能分解因式,这样的二次三项式是 [ ] a.x2-11x-12或x2+11x-12 b.x2-x-12或x2+x-12 c.x2-4x-12或x2+4x-12 d.以上都可以 16.下列各式x3-x2-x+1,x2+y-xy-x,x2-2x-y2+1,(x2+3x)2-(2x+1)2中,不含有(x-1)因式的有 [ ] a.1个 b.2个 c.3个 d.4个 17.把9-x2+12xy-36y2分解因式为 [ ] a.(x-6y+3)(x-6x-3) b.-(x-6y+3)(x-6y-3) c.-(x-6y+3)(x+6y-3) d.-(x-6y+3)(x-6y+3) 18.下列因式分解错误的是 [ ] a.a2-bc+ac-ab=(a-b)(a+c) b.ab-5a+3b-15=(b-5)(a+3) c.x2+3xy-2x-6y=(x+3y)(x-2) d.x2-6xy-1+9y2=(x+3y+1)(x+3y-1) 19.已知a2x2±2x+b2是完全平方式,且a,b都不为零,则a与b的关系为 [ ] a.互为倒数或互为负倒数 b.互为相反数 c.相等的数 d.任意有理数 20.对x4+4进行因式分解,所得的正确结论是 [ ] a.不能分解因式 b.有因式x2+2x+2 c.(xy+2)(xy-8) d.(xy-2)(xy-8) 21.把a4+2a2b2+b4-a2b2分解因式为 [ ] a.(a2+b2+ab)2 b.(a2+b2+ab)(a2+b2-ab) c.(a2-b2+ab)(a2-b2-ab) d.(a2+b2-ab)2 22.-(3x-1)(x+2y)是下列哪个多项式的分解结果 [ ] a.3x2+6xy-x-2y b.3x2-6xy+x-2y c.x+2y+3x2+6xy d.x+2y-3x2-6xy 23.64a8-b2因式分解为 [ ] a.(64a4-b)(a4+b) b.(16a2-b)(4a2+b) c.(8a4-b)(8a4+b) d.(8a2-b)(8a4+b) 24.9(x-y)2+12(x2-y2)+4(x+y)2因式分解为 [ ] a.(5x-y)2 b.(5x+y)2 c.(3x-2y)(3x+2y) d.(5x-2y)2 25.(2y-3x)2-2(3x-2y)+1因式分解为 [ ] a.(3x-2y-1)2 b.(3x+2y+1)2 c.(3x-2y+1)2 d.(2y-3x-1)2 26.把(a+b)2-4(a2-b2)+4(a-b)2分解因式为 [ ] a.(3a-b)2 b.(3b+a)2 c.(3b-a)2 d.(3a+b)2 27.把a2(b+c)2-2ab(a-c)(b+c)+b2(a-c)2分解因式为 [ ] a.c(a+b)2 b.c(a-b)2 c.c2(a+b)2 d.c2(a-b) 28.若4xy-4x2-y2-k有一个因式为(1-2x+y),则k的值为 [ ] a.0 b.1 c.-1 d.4 29.分解因式3a2x-4b2y-3b2x+4a2y,正确的是 [ ] a.-(a2+b2)(3x+4y) b.(a-b)(a+b)(3x+4y) c.(a2+b2)(3x-4y) d.(a-b)(a+b)(3x-4y) 30.分解因式2a2+4ab+2b2-8c2,正确的是 [ ] a.2(a+b-2c) b.2(a+b+c)(a+b-c) c.(2a+b+4c)(2a+b-4c) d.2(a+b+2c)(a+b-2c) 三、因式分解: 1.m2(p-q)-p+q; 2.a(ab+bc+ac)-abc; 3.x4-2y4-2x3y+xy3; 4.abc(a2+b2+c2)-a3bc+2ab2c2; 5.a2(b-c)+b2(c-a)+c2(a-b); 6.(x2-2x)2+2x(x-2)+1; 7.(x-y)2+12(y-x)z+36z2; 8.x2-4ax+8ab-4b2; 9.(ax+by)2+(ay-bx)2+2(ax+by)(ay-bx); 10.(1-a2)(1-b2)-(a2-1)2(b2-1)2; 11.(x+1)2-9(x-1)2; 12.4a2b2-(a2+b2-c2)2; 13.ab2-ac2+4ac-4a; 14.x3n+y3n; 15.(x+y)3+125; 16.(3m-2n)3+(3m+2n)3; 17.x6(x2-y2)+y6(y2-x2); 18.8(x+y)3+1; 19.(a+b+c)3-a3-b3-c3; 20.x2+4xy+3y2; 21.x2+18x-144; 22.x4+2x2-8; 23.-m4+18m2-17; 24.x5-2x3-8x; 25.x8+19x5-216x2; 26.(x2-7x)2+10(x2-7x)-24; 27.5+7(a+1)-6(a+1)2; 28.(x2+x)(x2+x-1)-2; 29.x2+y2-x2y2-4xy-1; 30.(x-1)(x-2)(x-3)(x-4)-48; 31.x2-y2-x-y; 32.ax2-bx2-bx+ax-3a+3b; 33.m4+m2+1; 34.a2-b2+2ac+c2; 35.a3-ab2+a-b; 36.625b4-(a-b)4; 37.x6-y6+3x2y4-3x4y2; 38.x2+4xy+4y2-2x-4y-35; 39.m2-a2+4ab-4b2; 40.5m-5n-m2+2mn-n2. 四、证明(求值): 1.已知a+b=0,求a3-2b3+a2b-2ab2的值. 2.求证:四个连续自然数的积再加上1,一定是一个完全平方数. 3.证明:(ac-bd)2+(bc+ad)2=(a2+b2)(c2+d2). 4.已知a=k+3,b=2k+2,c=3k-1,求a2+b2+c2+2ab-2bc-2ac的值. 5.若x2+mx+n=(x-3)(x+4),求(m+n)2的值. 6.当a为何值时,多项式x2+7xy+ay2-5x+43y-24可以分解为两个一次因式的乘积. 7.若x,y为任意有理数,比较6xy与x2+9y2的大小. 8.两个连续偶数的平方差是4的倍数. 参考答案: 一、填空题: 7.9,(3a-1) 10.x-5y,x-5y,x-5y,2a-b 11.+5,-2 12.-1,-2(或-2,-1) 14.bc+ac,a+b,a-c 15.8或-2 二、选择题: 1.b 2.c 3.c 4.b 5.b 6.d 7.a 8.c 9.d 10.b 11.c 12.c 13.b 14.c 15.d 16.b 17.b 18.d 19.a 20.b 21.b 22.d 23.c 24.a 25.a 26.c 27.c 28.c 29.d 30.d 三、因式分解: 1.(p-q)(m-1)(m+1). 8.(x-2b)(x-4a+2b). 11.4(2x-1)(2-x). 20.(x+3y)(x+y). 21.(x-6)(x+24). 27.(3+2a)(2-3a). 31.(x+y)(x-y-1). 38.(x+2y-7)(x+2y+5). 四、证明(求值): 2.提示:设四个连续自然数为n,n+1,n+2,n+3 6.提示:a=-18. ∴a=-18.
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯