“如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.
答案:1 悬赏:70 手机版
解决时间 2021-11-13 06:03
- 提问者网友:愿为果
- 2021-11-12 19:46
“如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.
最佳答案
- 五星知识达人网友:深街酒徒
- 2021-11-12 20:04
解答:解:依题意,画出函数y=(x-a)(x-b)的图象,如图所示.
函数图象为抛物线,开口向上,与x轴两个交点的横坐标分别为a,b(a<b).
方程1-(x-a)(x-b)=0
转化为(x-a)(x-b)=1,
方程的两根是抛物线y=(x-a)(x-b)与直线y=1的两个交点.
由m<n,可知对称轴左侧交点横坐标为m,右侧为n.
由抛物线开口向上,则在对称轴左侧,y随x增大而减少,则有m<a;在对称轴右侧,y随x增大而增大,则有b<n.
综上所述,可知m<a<b<n.
故选:A.
函数图象为抛物线,开口向上,与x轴两个交点的横坐标分别为a,b(a<b).
方程1-(x-a)(x-b)=0
转化为(x-a)(x-b)=1,
方程的两根是抛物线y=(x-a)(x-b)与直线y=1的两个交点.
由m<n,可知对称轴左侧交点横坐标为m,右侧为n.
由抛物线开口向上,则在对称轴左侧,y随x增大而减少,则有m<a;在对称轴右侧,y随x增大而增大,则有b<n.
综上所述,可知m<a<b<n.
故选:A.
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯