永发信息网

单选题已知y=f(x)是R上的偶函数,且f(x)=f(2-x),如果f(x)在[1,2

答案:2  悬赏:30  手机版
解决时间 2021-01-02 07:41
  • 提问者网友:我一贱你就笑
  • 2021-01-01 21:59
单选题 已知y=f(x)是R上的偶函数,且f(x)=f(2-x),如果f(x)在[1,2]上是减函数,那么f(x)在区间[-2,-1]和[3,4]上分别是A.增函数和减函数B.增函数和增函数C.减函数和减函数D.减函数和增函数
最佳答案
  • 五星知识达人网友:渊鱼
  • 2021-01-22 07:17
A解析分析:由偶函数在关于原点对称的区间上单调性相反及f(x)在[1,2]上是减函数可判断f(x)在区间[-2,-1]上的单调性,根据f(-x)=f(x)及f(x)=f(2-x),可求得函数f(x)的周期,从而可判断f(x)在[3,4]上的单调性.解答:因为f(x)为偶函数,且f(x)在[1,2]上是减函数,所以f(x)在区间[-2,-1]上是增函数;由f(-x)=f(x),f(x)=f(2-x),得f(2-x)=f(x)=f(-x),所以f(x)是以2为周期的函数,因为f(x)在[1,2]上是减函数,所以f(x)在[3,4]上也为减函数.故选A.点评:本题考查函数的奇偶性、单调性及周期性,考查学生综合运用所学知识分析问题解决问题的能力.
全部回答
  • 1楼网友:西风乍起
  • 2021-01-22 08:14
我明天再问问老师,叫他解释下这个问题
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯