永发信息网

求极限lim[x→0+](x^x-(sinx)^x)/(x^2ln(1+x))

答案:2  悬赏:0  手机版
解决时间 2021-03-26 08:42
  • 提问者网友:寂寞梧桐
  • 2021-03-26 03:58
求极限lim[x→0+](x^x-(sinx)^x)/(x^2ln(1+x))
最佳答案
  • 五星知识达人网友:妄饮晩冬酒
  • 2021-03-26 05:31
解:
分析:方法还是比较多的,不知道你学到那个阶段了,这里只用比较简单的初级的,泰勒定理的就不用了!
这种题,首先考虑应用等价无穷小替换!
显然:ln(1+x) ~ x
分母等价为:x³
对于分子:
(x^x)·[1-(sinx/x)^x]
(x^x)·{1-e^[xln(sinx/x)]}

lim(x→0+) xln(sinx/x)
=0

1-e^[xln(sinx/x)] ~ -xln(sinx/x)
-xln(sinx/x)= -x ln[1+(sinx-x)/x]
ln[1+(sinx-x)/x] ~ (sinx-x)/x

1-e^[xln(sinx/x)] ~ x-sinx
根据基本公式:
x-sinx ~ (1/6)x³

分子等价于:(x^x)(1/6)x³
而:
lim(x→0+) x^x
=e^lim(x→0+) xlnx
=e^lim(x→0+) lnx/(1/x)
=e^lim(x→0+) (1/x)/(-1/x²)
=1
综合:
原极限
=lim(x→0+) (x^x)·[1-(sinx/x)^x]/x³
=lim(x→0+) [1-(sinx/x)^x]/x³
=lim(x→0+) {1-e^[xln(sinx/x)]}/x³
=lim(x→0+) -xln(sinx/x)]/x³
=lim(x→0+) -xln[1+(sinx-x)/x]]/x³
=lim(x→0+) -x·[(sinx-x)/x] / x³
=lim(x→0+) (x-sinx)/x³
=1/6
全部回答
  • 1楼网友:撞了怀
  • 2021-03-26 06:26
解:分享一种解法,用"无穷小量替换"求解。
∵x→0时,e^x~1+x、ln(1+x)~x,且x→0时,xlnx→0、xln(sinx)→0,
∴x^x-(sinx)^x=e^(xlnx)-e^[xln(sinx)]~xlnx-xln(sinx)。∴原式=lim(x→0)(lnx-lnsinx)/x^2。
又,x→0时,sinx~x-(1/6)x^3,∴lnx-lnsinx~lnx-ln[x(1-x^2)/6]=-ln(1-x^2)/6~(1/6)x^2,
∴原式=(1/6)lim(x→0)(x^2)/x^2=1/6。
供参考。追问分子为什么能用等价无穷小替换呢?x^x与(sinx)^x都不是因式啊?追答通过变形,如x^ x=e^(xlnx),当x趋于0时,xlnx也趋于0,满足了替换条件,就可以替换处理了。
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯