线代中矩阵的乘法?所指的BA如何求来的,看不明白
- 提问者网友:相思似海深
- 2021-04-06 07:52
- 五星知识达人网友:酒者煙囻
- 2021-04-06 08:11
由矩阵乘法的定义,好理解呀
以乘积的结果矩阵为焦点进行分析,以第一行或第一列为例:
注意到:
矩阵的下标表示Amn,我们是先讲行数m再讲列数n;左为行数m,右为列数n,
这个有助于我们来记忆下面的内容.
积矩阵的第一列,等于左边矩阵乘以右边矩阵的第一列,可记成:左矩乘右列,或左乘右列;
积矩阵的第一行,等于左边矩阵的第一行乘以右边矩阵,可记成:左行乘右矩,或左行右乘.
一句话,用左行右列也可以将二者全记住.左行不动,或右列不动即可.
这两种观点是对称的,等效的,取其中一种观点都可以计算出结果,哪种方便就用哪一种,
两者同时熟练掌握,不可偏废.
对于列向量Am1与行向量B1n相乘,
用左乘右列来理解,如第一行:
左一行乘右列,即a11乘右列,得到积的第一行,这是数与向量相乘,很简单.
用左行右乘来理解,如第一列:
左行乘右一列,即左行乘b11,得到积的第一列,这是向量与数相乘,很简单.
下面是我曾答的一个相关题,用于理解矩阵乘法.
A和P是两个矩阵,P写成(p1,p2...,pn),于是AP=A(p1,p2...,pn)=(Ap1,AP2...)
答:用定义式检查一下.
AP=A(p1,p2...,pn)是显然的;
A(p1,p2...,pn)=(Ap1,AP2...)用定义式检查一下:
矩阵乘积的第i个列,是否与Ap[i]相同,就够了.
或者,只分析矩阵乘积的第一个列,是否与Ap1相同,就容易理解了.实际上,我们理解矩阵的乘积就可以这样做.
即积矩阵的第一列,等于左边矩阵乘以右边矩阵的第一列.
另一种做法是,
将A写成若行个行向量构成
A=(α1,α2,...,αn)'
=
(α1,
α2,
...,
αn)
则AP=(α1P,α2P,...,αnP)'
=
(α1P,
α2P,
...,
αnP)
即积矩阵的第一行,等于左边矩阵的第一行,乘以右边矩阵.
综述:
矩阵的下标表示Amn,我们是先讲行数m再讲列数n;左为行数m,右为列数n,
这个有助于我们来记忆下面的内容.
积矩阵的第一列,等于左边矩阵乘以右边矩阵的第一列,可记成:左矩乘右列,或左乘右列;
积矩阵的第一行,等于左边矩阵的第一行乘以右边矩阵,可记成:左行乘右矩,或左行右乘.
一句话,用左行右列也可以将二者全记住.左行不动,或右列不动即可.
这两种观点是对称的,等效的,取其中一种观点都可以计算出结果,哪种方便就用哪一种,
两者同时熟练掌握,不可偏废.