设f1(x)=2/(x+1),而fn+1(x)=f1(fn(x)),n是正整数,记an=(fn(2)-1)/(fn(2)+2),则a99=?
设f1(x)=2/(x+1),而fn+1(x)=f1(fn(x)),n是正整数,记an=(fn(2)-1)/(fn(2)+2),则a99=?
f1(2)=2/(2+1)=2/3 fn+1(2)=f1(fn(2))=2/(fn(2)+1)
an+1=(fn+1(2)-1)/(fn+1(2)+2)
=((2/(fn(2)+1))-1)/((2/(fn(2)+1))+2)
=(-1/2) (fn(2)-1)/(fn(2)+2)
=(-1/2)an
a1=(f1(2)-1)/(f1(2)+2)
=-1/8
an是公比为-0.5,首项为(-1/8)的等比数列,所以a99=-2^(-101)