什么叫做函数
答案:1 悬赏:10 手机版
解决时间 2021-02-27 17:54
- 提问者网友:疯子也有疯子的情调
- 2021-02-27 04:05
什么叫做函数
最佳答案
- 五星知识达人网友:思契十里
- 2021-02-27 05:34
问题一:函数是什么意思? 函数就是在某变化过程中有两个变量X和Y,变量Y随着变量X一起变化,而且依赖于X。如果变量X取某个特定的值,Y依确定的关系取相应的值,那么称Y是X的函数。这一要领是由法国数学家黎曼在19世纪提出来的,但是最早产生于德国的数学家菜布尼茨。他和牛顿是微积分的发明者。17世纪末,在他的文章中,首先使用了“function一词。翻译成汉语的意思就是“函数。不过,它和我们今天使用的函数一词的内涵并不一样,它表示”幂”、“坐标”、“切线长”等概念。
直到18世纪,法国数学家达朗贝尔在进行研究中,给函数重新下了一个定义,他认为,所谓变量的函数,就是指由这些变量和常量所组成的解析表达式,即用解析式表达函数关系。后来瑞士的数学家欧拉又把函数的定义作了进一步的规范,他认为函数是能描画出的一条曲线。我们常见到的一次函数的图像、二次函数的图像、正比例函数的图像、反比例的图像等都是用图像法表示函数关系的。如果用达朗贝尔和欧拉的方法来表达函数关系,各自有它们的优点,但是如果作为函数的定义,还有欠缺。因为这两种方法都还停留在表面现象上,而没有提示出函数的本质来。
19世纪中期,法国数学家黎紧吸收了莱布尼茨、达朗贝尔和欧拉的成果,第一次准确地提出了函数的定义:如果某一个量依赖于另一个量,使后一个量变化时,前一个量也随着变化,那么就把前一个量叫做后一个量的函数。黎曼定义的最大特点在于它突出了就是之间的依赖、变化的关系,反映了函数概念的本质属性。
参考资料:顶hidao.baidu.com/question/1899845.html问题二:什么是函数? 40分函数这个定义看谁问这个问题了。既然在问什么是函数我估计你还没有学过函数,还是初中生吧。
初中阶段,函数的定义为:有两个互相关联的变量x,y,y的值随x的值改变而改变,并且每给定一个x的值y都有唯一一个确定的值与之对应,那么y就叫做x的函数,x叫自变量。
定义里面注意两个关键词:确定 唯一
随着你的深入学习,会有更加严格,严密的函数定义。
高中阶段,会给出函龚的集合定义,会把函数定义会数集上的一种映射。这里面和初中阶段的不同在于 函数是建立在非空数集上的映射,当然也要注意两个关键词 确定和唯一 。
而什么是映射,简单的说就是一种对应关系。
到了大学,你会学到任何一种映射都可以看做函数
并且函数不止是两个变量之间的关系。也就是还有多元函数。问题三:什么是直接函数 直接函数就是原函数,反函数是对原函数中自变量X反解问题四:函数的概念,什么是函数 函数的定义
函数的传统定义:
设在某变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一确定的值与它对应,那么就称y是x的函数,x叫做自变量。
我们将自变量x取值的集合叫做函数的定义域,和自变量x对应的y的值叫做函数值,函数值的集合叫做函数的值域。
函数的近代定义:
设A,B都是非空的数的集合,f:x→y是从A到B的一个对应法则,那么从A到B的映射f:A→B就叫做函数,记作y=f(x),其中x∈A,y∈B,原象集合A叫做函数f(x)的定义域,象集合C叫做函数f(x)的值域,显然有CB。
符号y=f(x)即是“y是x的函数”的数学表示,应理解为:
x是自变量,它是法则所施加的对象;f是对应法则,它可以是一个或几个解析式,可以是图象、表格,也可以是文字描述;y是自变量的函数,当x为允许的某一具体值时,相应的y值为与该自变量值对应的函数值,当f用解析式表示时,则解析式为函数解析式。y=f(x)仅仅是函数符号,不是表示“y等于f与x的乘积”,f(x)也不一定是解析式,在研究函数时,除用符号f(x)外,还常用g(x),F(x),G(x)等符号来表示。
对函数概念的理解
函数的两个定义本质是一致的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。这样,就不难得知函数实质是从非空数集A到非空数集B的一个特殊的映射。
由函数的近代定义可知,函数概念含有三个要素:定义域A、值域C和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。y=f(x)的意义是:y等于x在法则f下的对应值,而f是“对应”得以实现的方法和途径,是联系x与y的纽带,所以是函数的核心。至于用什么字母表示自变量、因变量和对应法则,这是无关紧要的。
函数的定义域(即原象集合)是自变量x的取值范围,它是构成函数的一个不可缺少的组成部分。当函数的定义域及从定义域到值域的对应法则完全确定之后,函数的值域也就随之确定了。因此,定义域和对应法则为“y是x的函数”的两个基本条件,缺一不可。只有当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一个函数,这就是说:
1)定义域不同,两个函数也就不同;
2)对应法则不同,两个函数也是不同的;
3)即使是定义域和值域都分别相同的两个函数,它们也不一定是同一函数,因为函数的定义域和值域不能唯一地确定函数的对应法则。
例如:函数y=x+1与y=2x+1,其定义域都是x∈R,值域都为y∈R。也就是说,这两个函数的定义域和值域相同,但它们的对应法则是不同的,因此不能说这两个函数是同一个函数。
定义域A,值域C以及从A到C的对应法则f,称为函数的三要素。由于值域可由定义域和对应法则唯一确定。两个函数当且仅当定义域与对应法则分别相同时,才是同一函数。
例如:在①y=x与 ,② 与 ,③y=x+1与 ,④y=x0与y=1,⑤y=|x|与 这五组函数中,只有⑤表示同一函数。
f(x)与f(a)的区别与联系
f(a)表示当x=a时函数f(x)的值,是一个常量。而f(x)是自变量x的函数,在一般情况下,它是一个变量,f(a)是f(x)的一个特殊值。如一次函数f(x)=3x+4,当x=8时,f(8)=3×8+4=28是一常数。
当法则所施加的对象与解析式中表述的对象不一致时,该解析式不能正确施加法则。
比如f(x)=x2+1,左端是对x施加法则,右端也是关于x的解析式,这时此式是以x为自变量的函数的解析式;而对于f(x+1)=3x2+2x+1......余下全文>>问题五:什么叫做函数在某点没有定义? 5分比如y=1/x这个函数,在x=0的这一点上没有意义,也即在该点没有定义问题六:什么是函数做什么的 SUMIF函数:对符合指定条件的单元格求和
语法:SUMIF(range,criteria,sum_range)
range是指用于筛选的单元格区域;criteria是筛选的条件,可以是数字、表达式或文本值,如≥100、<100等;sum_range是实际的求和区域;例如:假设A1:A4中的数据是10、20、30、40,B1:B4中的数据是100、200、300、400,那么SUMIF(A1:A4,“15”,B1:B4)的值等于900。那是因为A2、A3、A4中的数据满足条件,所以相对应的对B2、B3、B4中的数据进行计算。问题七:什么叫函数的实现 举个例子,c语言中可以这样写一个函数
#include
#include
int max(int a,int b);//函数的声明
int main() {
int x,y;
scanf(%d%d,&x,&y);
printf(%d\n,max(x,y));
return 0;
}
int max(int a,int b) { //函数的实现
if (a>b) return a;
else return b;
}
这个程序是输入两个数,输出他们中的较大的一个。如注释。上面的那句仅仅是说明了函数的参数类型,调用方法,它叫声明。下面的这个指明了函数具体的运算过程,它叫函数的实现。
直到18世纪,法国数学家达朗贝尔在进行研究中,给函数重新下了一个定义,他认为,所谓变量的函数,就是指由这些变量和常量所组成的解析表达式,即用解析式表达函数关系。后来瑞士的数学家欧拉又把函数的定义作了进一步的规范,他认为函数是能描画出的一条曲线。我们常见到的一次函数的图像、二次函数的图像、正比例函数的图像、反比例的图像等都是用图像法表示函数关系的。如果用达朗贝尔和欧拉的方法来表达函数关系,各自有它们的优点,但是如果作为函数的定义,还有欠缺。因为这两种方法都还停留在表面现象上,而没有提示出函数的本质来。
19世纪中期,法国数学家黎紧吸收了莱布尼茨、达朗贝尔和欧拉的成果,第一次准确地提出了函数的定义:如果某一个量依赖于另一个量,使后一个量变化时,前一个量也随着变化,那么就把前一个量叫做后一个量的函数。黎曼定义的最大特点在于它突出了就是之间的依赖、变化的关系,反映了函数概念的本质属性。
参考资料:顶hidao.baidu.com/question/1899845.html问题二:什么是函数? 40分函数这个定义看谁问这个问题了。既然在问什么是函数我估计你还没有学过函数,还是初中生吧。
初中阶段,函数的定义为:有两个互相关联的变量x,y,y的值随x的值改变而改变,并且每给定一个x的值y都有唯一一个确定的值与之对应,那么y就叫做x的函数,x叫自变量。
定义里面注意两个关键词:确定 唯一
随着你的深入学习,会有更加严格,严密的函数定义。
高中阶段,会给出函龚的集合定义,会把函数定义会数集上的一种映射。这里面和初中阶段的不同在于 函数是建立在非空数集上的映射,当然也要注意两个关键词 确定和唯一 。
而什么是映射,简单的说就是一种对应关系。
到了大学,你会学到任何一种映射都可以看做函数
并且函数不止是两个变量之间的关系。也就是还有多元函数。问题三:什么是直接函数 直接函数就是原函数,反函数是对原函数中自变量X反解问题四:函数的概念,什么是函数 函数的定义
函数的传统定义:
设在某变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一确定的值与它对应,那么就称y是x的函数,x叫做自变量。
我们将自变量x取值的集合叫做函数的定义域,和自变量x对应的y的值叫做函数值,函数值的集合叫做函数的值域。
函数的近代定义:
设A,B都是非空的数的集合,f:x→y是从A到B的一个对应法则,那么从A到B的映射f:A→B就叫做函数,记作y=f(x),其中x∈A,y∈B,原象集合A叫做函数f(x)的定义域,象集合C叫做函数f(x)的值域,显然有CB。
符号y=f(x)即是“y是x的函数”的数学表示,应理解为:
x是自变量,它是法则所施加的对象;f是对应法则,它可以是一个或几个解析式,可以是图象、表格,也可以是文字描述;y是自变量的函数,当x为允许的某一具体值时,相应的y值为与该自变量值对应的函数值,当f用解析式表示时,则解析式为函数解析式。y=f(x)仅仅是函数符号,不是表示“y等于f与x的乘积”,f(x)也不一定是解析式,在研究函数时,除用符号f(x)外,还常用g(x),F(x),G(x)等符号来表示。
对函数概念的理解
函数的两个定义本质是一致的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。这样,就不难得知函数实质是从非空数集A到非空数集B的一个特殊的映射。
由函数的近代定义可知,函数概念含有三个要素:定义域A、值域C和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。y=f(x)的意义是:y等于x在法则f下的对应值,而f是“对应”得以实现的方法和途径,是联系x与y的纽带,所以是函数的核心。至于用什么字母表示自变量、因变量和对应法则,这是无关紧要的。
函数的定义域(即原象集合)是自变量x的取值范围,它是构成函数的一个不可缺少的组成部分。当函数的定义域及从定义域到值域的对应法则完全确定之后,函数的值域也就随之确定了。因此,定义域和对应法则为“y是x的函数”的两个基本条件,缺一不可。只有当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一个函数,这就是说:
1)定义域不同,两个函数也就不同;
2)对应法则不同,两个函数也是不同的;
3)即使是定义域和值域都分别相同的两个函数,它们也不一定是同一函数,因为函数的定义域和值域不能唯一地确定函数的对应法则。
例如:函数y=x+1与y=2x+1,其定义域都是x∈R,值域都为y∈R。也就是说,这两个函数的定义域和值域相同,但它们的对应法则是不同的,因此不能说这两个函数是同一个函数。
定义域A,值域C以及从A到C的对应法则f,称为函数的三要素。由于值域可由定义域和对应法则唯一确定。两个函数当且仅当定义域与对应法则分别相同时,才是同一函数。
例如:在①y=x与 ,② 与 ,③y=x+1与 ,④y=x0与y=1,⑤y=|x|与 这五组函数中,只有⑤表示同一函数。
f(x)与f(a)的区别与联系
f(a)表示当x=a时函数f(x)的值,是一个常量。而f(x)是自变量x的函数,在一般情况下,它是一个变量,f(a)是f(x)的一个特殊值。如一次函数f(x)=3x+4,当x=8时,f(8)=3×8+4=28是一常数。
当法则所施加的对象与解析式中表述的对象不一致时,该解析式不能正确施加法则。
比如f(x)=x2+1,左端是对x施加法则,右端也是关于x的解析式,这时此式是以x为自变量的函数的解析式;而对于f(x+1)=3x2+2x+1......余下全文>>问题五:什么叫做函数在某点没有定义? 5分比如y=1/x这个函数,在x=0的这一点上没有意义,也即在该点没有定义问题六:什么是函数做什么的 SUMIF函数:对符合指定条件的单元格求和
语法:SUMIF(range,criteria,sum_range)
range是指用于筛选的单元格区域;criteria是筛选的条件,可以是数字、表达式或文本值,如≥100、<100等;sum_range是实际的求和区域;例如:假设A1:A4中的数据是10、20、30、40,B1:B4中的数据是100、200、300、400,那么SUMIF(A1:A4,“15”,B1:B4)的值等于900。那是因为A2、A3、A4中的数据满足条件,所以相对应的对B2、B3、B4中的数据进行计算。问题七:什么叫函数的实现 举个例子,c语言中可以这样写一个函数
#include
#include
int max(int a,int b);//函数的声明
int main() {
int x,y;
scanf(%d%d,&x,&y);
printf(%d\n,max(x,y));
return 0;
}
int max(int a,int b) { //函数的实现
if (a>b) return a;
else return b;
}
这个程序是输入两个数,输出他们中的较大的一个。如注释。上面的那句仅仅是说明了函数的参数类型,调用方法,它叫声明。下面的这个指明了函数具体的运算过程,它叫函数的实现。
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯