如图,在四边形ABCD中,已知AB∥CD,直线AB,BC,AD,DC分别与平面α相交于点E,G,H,F.求证:E,F,G,H四点必定共线.
答案:2 悬赏:80 手机版
解决时间 2021-01-03 07:10
- 提问者网友:骑士
- 2021-01-02 20:04
如图,在四边形ABCD中,已知AB∥CD,直线AB,BC,AD,DC分别与平面α相交于点E,G,H,F.求证:E,F,G,H四点必定共线.
最佳答案
- 五星知识达人网友:七十二街
- 2021-01-02 20:46
解:∵AB∥CD,
∴AB,CD确定一个平面β.
又∵AB∩α=E,AB?β,∴E∈α,E∈β,
即E为平面α与β的一个公共点.
同理可证F,G,H均为平面α与β的公共点.
∵两个平面有公共点,它们有且只有一条通过公共点的公共直线,
∴E,F,G,H四点必定共线.解析分析:根据推论3及公理2可知,两条平行直线AB和CD可以确定一个平面ABCD,并且平面ABCD与平面α的所有的公共点应该在一条直线上,根据题意,这些公共点即E,G,H,F四点,所以这四点必定共线.点评:在立体几何的问题中,证明若干点共线时,常运用公理2,即先证明这些点都是某二平面的公共点,而后得出这些点都在二平面的交线上的结论.
∴AB,CD确定一个平面β.
又∵AB∩α=E,AB?β,∴E∈α,E∈β,
即E为平面α与β的一个公共点.
同理可证F,G,H均为平面α与β的公共点.
∵两个平面有公共点,它们有且只有一条通过公共点的公共直线,
∴E,F,G,H四点必定共线.解析分析:根据推论3及公理2可知,两条平行直线AB和CD可以确定一个平面ABCD,并且平面ABCD与平面α的所有的公共点应该在一条直线上,根据题意,这些公共点即E,G,H,F四点,所以这四点必定共线.点评:在立体几何的问题中,证明若干点共线时,常运用公理2,即先证明这些点都是某二平面的公共点,而后得出这些点都在二平面的交线上的结论.
全部回答
- 1楼网友:玩家
- 2021-01-02 21:11
我检查一下我的答案
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯