等差数列S5=45,S6=60,求{an}的同向公式an
若数列{an}满足Bn+1-Bn=an且b1=3,求{1/bn}的前n项和Tn
等差数列S5=45,S6=60,求{an}的同向公式an
若数列{an}满足Bn+1-Bn=an且b1=3,求{1/bn}的前n项和Tn
设an=a1+(n-1)d
S5=45,S6=60
即:
a1+a2+a3+a4+a5=45
a1+a2+a3+a4+a5+a6=60
即:
5a1+10d=45
6a1+15d=60
解得:
a1=5
d=2
所以
an=5+2(n-1)
...............................
Bn+1-Bn=an=3+2n
B2-B1=3+2*1
B3-B2=3+2*2
B4-B3=3+2*3
......
Bn-Bn-1=3+2*(n-1)
相加:
Bn-B1=3*(n-1)+2*(1+2+3+...+(n-1))=n^2+2n-3
Bn=n^2+2n=n(n+2)
1/Bn=1/[n(n+2)]=1/2*[1/n-1/(n+2)]
则:
Tn=1/B1+1/B2+1/B3+...+1/Bn=1/2[1/1-1/3+1/2-1/4+1/3-1/5+...+1/n-1/(n+2)]=3/2-1/(n+1)-1/(n+2)
解:S5=a1+a2+a3+a4+a5=5a1+10d=45
a6=S6-S5=a1+5d=15
由上面2个公式得出:a1=5,d=2
an=2n=3
由Bn+1-Bn=an得出 Bn-B1=a1-a2+……an=n×n+2n-3
=》Bn=n×n+2n=n(n+2)
Tn=1/(1×3)+1/(3×5)+……+1/n(n+2)=[1-1/3+1/3-1/5+……+1/n-1/(n+2)]×1/2
=(n+1)/2(n+2)