图(1)是一个黑色的正三角形,顺次连接三边中点,得到如图(2)所示的第2个图形(它的中间为一个白色的正三角形);在图(2)的每个黑色的正三角形中分别重复上述的作法,得到如图(3)所示的第3个图形.如此继续作下去,则在得到的第5个图形中,白色的正三角形的个数是______.
图(1)是一个黑色的正三角形,顺次连接三边中点,得到如图(2)所示的第2个图形(它的中间为一个白色的正三角形);在图(2)的每个黑色的正三角形中分别重复上述的作法,得
答案:2 悬赏:0 手机版
解决时间 2021-03-17 08:56
- 提问者网友:树红树绿
- 2021-03-16 19:56
最佳答案
- 五星知识达人网友:天凉才是好个秋
- 2019-08-12 06:09
解:设白三角形x个,黑三角形y个,
则:n=1时,x=0,y=1;
n=2时,x=0+1=1,y=3;
n=3时,x=3+1=4,y=9;
n=4时,x=4+9=13,y=27;
当n=5时,x=13+27=40,
所以白的正三角形个数为:40,
故
则:n=1时,x=0,y=1;
n=2时,x=0+1=1,y=3;
n=3时,x=3+1=4,y=9;
n=4时,x=4+9=13,y=27;
当n=5时,x=13+27=40,
所以白的正三角形个数为:40,
故
全部回答
- 1楼网友:拜訪者
- 2020-08-24 19:03
这个问题我还想问问老师呢
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯