函数论文急急急
答案:4 悬赏:70 手机版
解决时间 2021-05-11 02:23
- 提问者网友:疯孩纸
- 2021-05-10 11:39
一元二次不等式论文谢谢,重赏
最佳答案
- 五星知识达人网友:旧脸谱
- 2021-05-10 12:06
1 要把握函数的实质
17世纪初期,笛卡尔在引入变量概念之后,就有了函数的思想,把函数一词用作数学术语的是莱布尼兹,欧拉在1734年首次用f(x)作为函数符号。关于函数概念有“变量说”、“对应说”、“集合说”等。变量说的定义是:设x、y是两个变量,如果当变量x在实数的某一范围内变化时,变量y按一定规律随x的变化而变化。我们称x为自变量,变量y叫变量x的函数,记作y=f(x)。初中教材中的定义为:如果在某个变化过程中有两个变量x、y,并且对于x在某个范围内的每一个确定的值,按照某个对应法则,y都有唯一确定的值与之对应,那么y就是x的函数,x叫自变量,x的取值范围叫函数的定义域,和x的值对应的y的值叫函数值,函数值的集合叫函数的值域。它的优点是自然、形像和直观、通俗地描述了变化,它致命的弊端就是对函数的实质——对应缺少充分地刻画,以致不能明确函数是x、y双方变化的总体,却把y定义成x的函数,这与函数是反映变量间的关系相悖,究竟函数是指f ,还是f(x),还是y=f(x)?使学生不易区别三者的关系。
迪里赫莱(P.G .Dirichlet)注意到了“对应关系”,于1837年提出:对于在某一区间上的每一确定的x值,y都有一个或多个确定的值与之对应,那么y叫x的一个函数。19世纪70年代集合论问世后,明确把集合到集合的单值对应称为映射,并把:“一切非空集合到数集的映射称为函数”,函数是映射概念的推广。对应说的优点有:①它抓住了函数的实质——对应,是一种对应法则。②它以集合为基础,更具普遍性。③它将抽像的知识以模型并赋予生活化,比如:某班每一位同学与身高(实数)的对应;某班同学在某次测试的成绩的对应;全校学生与某天早上吃的馒头数的对应等都是函数。函数由定义域、值域、对应法则共同刻划,它们相互独立,缺一不可。这样很明确的指出了函数的实质。
对于集合说是考虑到集合是数学中一个最原始的概念,而函数的定义里的“对应”却是一个外加的形式,,似乎不是集合语言,1914年豪斯道夫(F.Hausdorff)采用了纯集合论形式的定义:如果集合 f С{(x,y)|x∈A,y∈B}且满足条件,对于每一个x∈A,若(x,y1) ∈f,(x,y2) ∈f,则y1=y2,这时就称集合f为A到B的一个函数。这里f为直积A×B={(x,y)|x∈A,y∈B}的一个特殊子集,而序偶(x,y)又是用集合定义的:(x,y)={{x},{x,y}}.定义过于形式化,它舍弃了函数关系生动的直观,既看不出对应法则的形式,更没有解析式,不但不易为中学生理解,而且在推导中也不便使用,如此完全化的数学语言只能在计算机中应用。
2 加强数形结合
数学是人们对客观世界定性把握和定量刻画、逐渐抽像概括、形成方法和理论,并进行广泛应用的过程。在7—12年级所研究的函数主要是幂函数、指数函数、对数函数和三角函数,对每一类函数都是利用其图像来研究其性质的,作图在教学中显得无比重要。我认为这一部分的教学要做到学生心中有形,函数图像就相当于佛教教徒心中各种各样的佛像,只要心中有形,函数性质就比较直观,处理问题时就会得心应手。函数观念和数形结合在数列及平面几何中也有广泛的应用。如函数y=log0.5|x2-x-12|单调区间,令t=|x2-x-12|=|(x-?)2-12.25|,t=0时,x=-3或x=4,知t函数的图像是变形后的抛物线,其对称轴为x=?与x轴的交点是x=-3或x=4并开口向上,其x∈(-3,4)的部分由x轴下方翻转到x轴上方,再考虑对数函数性质即可。又如:判定方程3x2+6x =1 x的实数根的个数,该方程实根个数就是两个函数y=3x2+6x与y=1/x图像的交点个数,作出图像交点个数便一目了然
17世纪初期,笛卡尔在引入变量概念之后,就有了函数的思想,把函数一词用作数学术语的是莱布尼兹,欧拉在1734年首次用f(x)作为函数符号。关于函数概念有“变量说”、“对应说”、“集合说”等。变量说的定义是:设x、y是两个变量,如果当变量x在实数的某一范围内变化时,变量y按一定规律随x的变化而变化。我们称x为自变量,变量y叫变量x的函数,记作y=f(x)。初中教材中的定义为:如果在某个变化过程中有两个变量x、y,并且对于x在某个范围内的每一个确定的值,按照某个对应法则,y都有唯一确定的值与之对应,那么y就是x的函数,x叫自变量,x的取值范围叫函数的定义域,和x的值对应的y的值叫函数值,函数值的集合叫函数的值域。它的优点是自然、形像和直观、通俗地描述了变化,它致命的弊端就是对函数的实质——对应缺少充分地刻画,以致不能明确函数是x、y双方变化的总体,却把y定义成x的函数,这与函数是反映变量间的关系相悖,究竟函数是指f ,还是f(x),还是y=f(x)?使学生不易区别三者的关系。
迪里赫莱(P.G .Dirichlet)注意到了“对应关系”,于1837年提出:对于在某一区间上的每一确定的x值,y都有一个或多个确定的值与之对应,那么y叫x的一个函数。19世纪70年代集合论问世后,明确把集合到集合的单值对应称为映射,并把:“一切非空集合到数集的映射称为函数”,函数是映射概念的推广。对应说的优点有:①它抓住了函数的实质——对应,是一种对应法则。②它以集合为基础,更具普遍性。③它将抽像的知识以模型并赋予生活化,比如:某班每一位同学与身高(实数)的对应;某班同学在某次测试的成绩的对应;全校学生与某天早上吃的馒头数的对应等都是函数。函数由定义域、值域、对应法则共同刻划,它们相互独立,缺一不可。这样很明确的指出了函数的实质。
对于集合说是考虑到集合是数学中一个最原始的概念,而函数的定义里的“对应”却是一个外加的形式,,似乎不是集合语言,1914年豪斯道夫(F.Hausdorff)采用了纯集合论形式的定义:如果集合 f С{(x,y)|x∈A,y∈B}且满足条件,对于每一个x∈A,若(x,y1) ∈f,(x,y2) ∈f,则y1=y2,这时就称集合f为A到B的一个函数。这里f为直积A×B={(x,y)|x∈A,y∈B}的一个特殊子集,而序偶(x,y)又是用集合定义的:(x,y)={{x},{x,y}}.定义过于形式化,它舍弃了函数关系生动的直观,既看不出对应法则的形式,更没有解析式,不但不易为中学生理解,而且在推导中也不便使用,如此完全化的数学语言只能在计算机中应用。
2 加强数形结合
数学是人们对客观世界定性把握和定量刻画、逐渐抽像概括、形成方法和理论,并进行广泛应用的过程。在7—12年级所研究的函数主要是幂函数、指数函数、对数函数和三角函数,对每一类函数都是利用其图像来研究其性质的,作图在教学中显得无比重要。我认为这一部分的教学要做到学生心中有形,函数图像就相当于佛教教徒心中各种各样的佛像,只要心中有形,函数性质就比较直观,处理问题时就会得心应手。函数观念和数形结合在数列及平面几何中也有广泛的应用。如函数y=log0.5|x2-x-12|单调区间,令t=|x2-x-12|=|(x-?)2-12.25|,t=0时,x=-3或x=4,知t函数的图像是变形后的抛物线,其对称轴为x=?与x轴的交点是x=-3或x=4并开口向上,其x∈(-3,4)的部分由x轴下方翻转到x轴上方,再考虑对数函数性质即可。又如:判定方程3x2+6x =1 x的实数根的个数,该方程实根个数就是两个函数y=3x2+6x与y=1/x图像的交点个数,作出图像交点个数便一目了然
全部回答
- 1楼网友:冷風如刀
- 2021-05-10 15:06
去学位论文网www.xwlunwen.com看看吧,我们那时毕业就找的这家代写的,质量不错的,论文一次性就通过了,信誉也有保证的,他们的网站做了8年了,代写各类论文,还可以代发表哦,快去看看吧!
- 2楼网友:天凉才是好个秋
- 2021-05-10 14:29
据我搜集的一些网站来看,建议看看这个,要做毕业论文以及毕业设计的,推荐一个网站 http://www.wnwu.com ,里面的毕业设计什么的全是优秀的,因为精挑细选的,网上很少有,都是相当不错的毕业论文和毕业设计,对毕业论文的写作有很大的参考价值,希望对你有所帮助。
别的相关范文很多的,推荐一些比较好的范文写作网站,希望对你有帮助,这些精选的范文网站,里面有大量的范文,也有各种文章写作方法,注意事项,应该有适合你的,自己动手找一下,可不要照搬啊,参考一下,用自己的语言写出来那才是自己的。
如果你不是校园网的话,请在下面的网站找:
毕业论文网: http://www.wnwu.com 分类很细 栏目很多
论文范文网: http://www.lw12.com
论文吧 http://www.qclxs.cn/
都是不错的网站
- 3楼网友:撞了怀
- 2021-05-10 12:54
数学论文 www.wsdxs.cn/html/shuxue
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯