求证:三角形三条边的垂直平分线相交于一点。
答案:1 悬赏:80 手机版
解决时间 2021-03-02 06:59
- 提问者网友:孤山下
- 2021-03-01 23:36
求证:三角形三条边的垂直平分线相交于一点。
最佳答案
- 五星知识达人网友:渡鹤影
- 2021-03-01 23:46
证明:
∵XX′,YY′分别是△ABC的BC边与AC边的中垂线,
∴XX′,YY′必相交于一点,设为O(否则,XX′∥YY′,那么∠C必等于180°,这是不可能的).
∵OB=OC,OC=OA,
∴OB=OA,
∴O点必在AB的垂直平分线ZZ′上,
∴XX′,YY′,ZZ′相交于一点。
垂直平分线为经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线,又称“中垂线”。垂直平分线可以看成到线段两个端点距离相等的点的集合,垂直平分线是线段的一条对称轴。
它是初中几何学科中非常重要的一部分内容。垂直平分线将一条线段从中间分成左右相等的两条线段,并且与所分的线段垂直(成90°角)。
∵XX′,YY′分别是△ABC的BC边与AC边的中垂线,
∴XX′,YY′必相交于一点,设为O(否则,XX′∥YY′,那么∠C必等于180°,这是不可能的).
∵OB=OC,OC=OA,
∴OB=OA,
∴O点必在AB的垂直平分线ZZ′上,
∴XX′,YY′,ZZ′相交于一点。
垂直平分线为经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线,又称“中垂线”。垂直平分线可以看成到线段两个端点距离相等的点的集合,垂直平分线是线段的一条对称轴。
它是初中几何学科中非常重要的一部分内容。垂直平分线将一条线段从中间分成左右相等的两条线段,并且与所分的线段垂直(成90°角)。
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯