正三棱锥S-ABC中,BC=2,SB=根号3,D,E分别是棱SA,SB上的点,Q为边AB中点,SQ垂直平面CDE,则三角形CDE
答案:2 悬赏:50 手机版
解决时间 2021-03-14 20:04
- 提问者网友:浪荡绅士
- 2021-03-14 07:32
正三棱锥S-ABC中,BC=2,SB=根号3,D,E分别是棱SA,SB上的点,Q为边AB中点,SQ垂直平面CDE,则三角形CDE的面积为
最佳答案
- 五星知识达人网友:舊物识亽
- 2021-03-14 07:55
解:设SQ与DE相交于点P,连结CP,CD,CE,CQ,
∵SQ⊥平面CDE
∴SQ⊥CP,SQ⊥DE
又在正三角形ABC中,BC=2,Q为AB的中点
∴CQ=√3,
∵CS=√3
∴△CSQ为等腰三角形,
由SQ⊥CP得,CP为中线,P为SQ的中点.
在△SAB中,易知SQ⊥AB,
又SQ⊥DE,∴DE‖AB,
∵P为SQ的中点,
∴DE=AB/2=1,SQ=√2
在等腰△CSQ中,CQ=CS=√3,SQ=√2,P为SQ的中点
∴CP=(√10)/2
在正三棱锥S-ABC中,易证AB⊥平面CSQ,
又DE‖AB,
∴DE⊥平面CSQ,DE⊥CP
∴三角形CDE的面积=DE*CP/2=1*(√10/2)/2=(√10)/4.
∵SQ⊥平面CDE
∴SQ⊥CP,SQ⊥DE
又在正三角形ABC中,BC=2,Q为AB的中点
∴CQ=√3,
∵CS=√3
∴△CSQ为等腰三角形,
由SQ⊥CP得,CP为中线,P为SQ的中点.
在△SAB中,易知SQ⊥AB,
又SQ⊥DE,∴DE‖AB,
∵P为SQ的中点,
∴DE=AB/2=1,SQ=√2
在等腰△CSQ中,CQ=CS=√3,SQ=√2,P为SQ的中点
∴CP=(√10)/2
在正三棱锥S-ABC中,易证AB⊥平面CSQ,
又DE‖AB,
∴DE⊥平面CSQ,DE⊥CP
∴三角形CDE的面积=DE*CP/2=1*(√10/2)/2=(√10)/4.
全部回答
- 1楼网友:雾月
- 2021-03-14 09:22
pc=√10/2, ∴s△cde=pc*de/,连结cp, de是△sab的中位线,de=ab/2=1, ∵sq⊥平面cde, cp∈cde,交de于p;2=√2/2, 根据勾股定理连结sq;2)bc=√3;2=1*(√10/2)/, sc=qc=√3, ∴△sqc是等腰△, 在△sqb中;4, ∴sq⊥pc, ∵△abc是正△, ∴cq=(√3/,sq=√2, sp=sq/2=√10/,qb=1,sb=√3, 根据勾股定理
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯