永发信息网

数学物理方程的浙大版

答案:1  悬赏:0  手机版
解决时间 2021-02-23 11:54
  • 提问者网友:孤山下
  • 2021-02-23 05:36
数学物理方程的浙大版
最佳答案
  • 五星知识达人网友:山君与见山
  • 2021-02-23 06:28
作者:李胜宏//陈仲慈//潘祖梁
ISBN:10位[7308056678] 13位[9787308056670]
出版社:浙江大学出版社
出版日期:2008-1-1
定价:¥15.00 元 描述许多自然现象的数学形式都可以是偏微分方程式,特别是很多重要的物理力学及工程过程的基本规律的数学描述都是偏微分方程,例如流体力学、电磁学的基本定律都是如此。这些反映物理及工程过程的规律的偏微分方程就是所谓的数学物理方程。当然,几何学中的很多问题也是可以用偏微分方程来描述的。
人们对偏微分方程的研究,从微分学产生后不久就开始了。例如,18世纪初期及对弦线的横向振动研究,其后,对热传导理论的研究,以及和对流体力学、对位函数的研究,都获得相应的数学物理方程信其有效的解法。到19世纪中叶,进一步从个别方程的深入研究逐渐形成了偏微分的一般理论,如方程的分类、特征理论等,这便是经典的偏微分方程理论的范畴。
然而到了20世纪随着科学技术的不断发展,在科学实践中提出了数学物理方程的新问题,电子计算机的出现为数学物理方程的研究成果提供了强有力的实现手段。又因为数学的其他分支(如泛函分析、拓扑学、群论、微分几何等等)也有了迅速发展,为深入研究偏微分方程提供了有力的工具。因而,20世纪关于数学物理方程的研究有了前所未有的发展,这些发展呈如下特点和趋势:
一、在许多自然科学及工程技术中提出的问题的数学描述大多是非线性偏微分方程,即使一些线性偏微分方程作近似处理的问题,由于研究的深入,也必须重新考虑非线性效应。对非线性偏微分方程研究,难度大得多,然而对线性偏微分方程的已有结果,将提供很多有益的启示。
二、实践中的是由很多因素联合作用和相互影响的。所以其数学模型多是非线性偏微分方程组。如反应扩散方程组,流体力学方程组电磁流体力学方程组,辐射流体方程组等,在数学上称双曲-抛物方程组。
三、数学物理方程不再只是描述物理学、力学等工程过程的数学形式。而目前在化学、生物学、医学、农业、环保领域,甚至在经济等社会科学住房领域都不断提出一些非常重要的偏微分方程。
四、一个实际模型的数学描述,除了描述过程的方程(或方程)外,还应有定解条件(如初始条件及边值条件)。传统的描述,这些条件是线性的,逐点表示的。而现在提出的很多定解条件是非线性的,特别是非局部的。对非局部边值问题的研究是一个新的非常有意义的领域。
五、与数学其他分支的关系。例如几何学中提出了很多重要的非线性偏微分方程,如极小曲面方程,调和映照方程,方程等等。泛函分析、拓扑学及群论等现代工具在偏微分方程的理论研究中被广泛应用,例如空间为研究线性信非线性偏微分方程提供了强有力的框架和工具。广义函数的应用使得经典的线性微分方程理论更系统完善。再就是计算机的广泛应用,计算方法的快速发展,特别是有限元广泛 的应用,使得对偏微分方程的研究得以在实践中实现和检验。
用数学方法处理应用问题时,首先是要建立合理的数学模型,而很多情况下这种模型是偏微分方程。一个模型的建立是一个相当复杂的过程。 第1章 方程的导出和定解问题
§1.1 方程的导出
§1.2 定解条件和定解问题
§1.3 二阶线性方程的分类与叠加原理
习题一
第2章 行波法
§2.1 一维波动方程的初值问题
2.1.1 无界弦的自由振动
2.1.2 半无界弦的自由振动
2.1.3 无界弦的强迫振动
§2.2 二维与三维波动方程的初值问题
2.2.1 球对称情况
2.2.2 一般情况
2.2.3 降维法及二维波动方程
§2.3 解的物理意义
2.3.1 D'Alembert公式的物理意义
2.3.2 依赖区域、决定区域和影响区域
习题二
第3章 分离变量法和特殊函数
§3.1 齐次边界条件的定解问题
3.1.1 齐次方程齐次边界条件
3.1.2 非齐次方程齐次边界条件
§3.2 非齐次边界条件的定解问题
3.2.1 边界条件齐次化
3.2.2 周期性条件和自然边界条件
§3.3 柱域中的分离变量法和Bessel函数
3.3.1 Bessel方程的引出
3.3.2 Bessel函数及其性质
§3.4 球域中的分离变量法及Legendre多项式
3.4.1 Legendre方程的引出
3.4.2 Legendre多项式
§3.5 本征值理论
3.5.1 Sturm-Liouville边值问题
3.5.2 本征函数的正交性
3.5.3 展开定理
3.5.4 奇异的本征值问题
习题三
第4章 积分变换法
§4.1 Fourier变换及其性质
§4.1.1 Fourier变换的形式导出及它的定义
§4.1.2 Fourier变换的基本性质
§4.1.3 占函数及它的Fourier变换
§4.2 Fourier变换在求解偏微分方程初值问题中的应用
4.2.1 一维热传导方程的初值问题
4.2.2 一维波动方程的初值问题
4.2.3 应用Fourier变换求解边值问题
§4.3 Laplace变换及其性质
4.3.1 Laplace变换的形式推导
4.3.2 存在定理
4.3.3 Laplace变换的基本性质
§4.4 Laplace变换在求解偏微分方程定解问题中的应用
习题四
第5章 Green函数法
§5.1 Laplace方程第一边值问题的Green函数法
5.1.1 Green公式、基本解与基本积分公式
5.1.2 Green函数及其意义
5.1.3 特殊区域的Green函数
习题五
习题答案
附录
附录A Fourier变换表
附录B Laplace变换表
附录C 柱函数、球函数的公式及数表
参考文献

我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯