欧拉线的应用
答案:1 悬赏:0 手机版
解决时间 2021-03-26 05:35
- 提问者网友:焚苦与心
- 2021-03-26 01:16
欧拉线的应用
最佳答案
- 五星知识达人网友:雾月
- 2021-03-26 02:38
1 : 平面上共圆的5个点,任取其中3点组成三角形,过其重心作另外两点连线的垂线,共有10条。则这10线交于一点。
证明:设5个点对应的向量分别是z1, z2, z3, z4, z5,且它们的模相等。
因为|z1|=|z2|,所以0, z1, z2, z1+z2这四个点构成一个菱形,所以它们的对角线垂直,所以垂直于z1、z2的连线就相当于平行于z1+z2。
这样经过三角形z3, z4, z5的重心,且垂直于z1, z2连线的直线方程就是
z(t) = (z3+z4+z5)/3 + t(z1+z2),其中t是任意实数。
取 t=1/3,就得到(z1+z2+z3+z4+z5)/3在这直线上。同理可得这点在所有这类直线上。
2:平面上共圆的5个点,任取其中3点组成三角形,过其垂心作另外两点连线的垂线,共有10条。则这10线交于一点。
3:平面上共圆的5个点,任取其中3点组成三角形,过其九点圆圆心作另外两点连线的垂线,共有10条。则这10线交于一点。
证明:第2,3个结论缘于以下事实:欧拉线上的四点中,九点圆圆心到垂心和外心的距离相等,而且重心到外心的距离是重心到垂心距离的一半。
证明:设5个点对应的向量分别是z1, z2, z3, z4, z5,且它们的模相等。
因为|z1|=|z2|,所以0, z1, z2, z1+z2这四个点构成一个菱形,所以它们的对角线垂直,所以垂直于z1、z2的连线就相当于平行于z1+z2。
这样经过三角形z3, z4, z5的重心,且垂直于z1, z2连线的直线方程就是
z(t) = (z3+z4+z5)/3 + t(z1+z2),其中t是任意实数。
取 t=1/3,就得到(z1+z2+z3+z4+z5)/3在这直线上。同理可得这点在所有这类直线上。
2:平面上共圆的5个点,任取其中3点组成三角形,过其垂心作另外两点连线的垂线,共有10条。则这10线交于一点。
3:平面上共圆的5个点,任取其中3点组成三角形,过其九点圆圆心作另外两点连线的垂线,共有10条。则这10线交于一点。
证明:第2,3个结论缘于以下事实:欧拉线上的四点中,九点圆圆心到垂心和外心的距离相等,而且重心到外心的距离是重心到垂心距离的一半。
我要举报
如以上回答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
点此我要举报以上问答信息
大家都在看
推荐资讯